On the possible pragmatic origins of inquisitiveness

Matthijs Westera
Universitat Pompeu Fabra (University of Amsterdam)
Outline

1. Background & Motivation
2. Attentional pragmatics
3. Deriving something like Alternative Semantics
Outline

1. Background & Motivation
2. Attentional pragmatics
3. Deriving something like Alternative Semantics
pQP
Inquisitive Semantics

pvq
Alternative Semantics
(= Unrestricted inquisitive semantics)

\[\text{pvq} \]
Alternative Semantics

\[p \vee q \neq p \vee q \vee (p \wedge q) \]
Inquisitive Semantics

$p \lor q$ \quad \equiv \quad p \lor q \land (p \land q)$
Alternative Semantics

$p \cap \CC q \neq \diamondsuit p \land q$

Groenendijk & Stokhof 1984
Roelofsen 2013
Ciardelli 2017
Inquisitive Semantics

Groenendijk & Stokhof 1984
Roelofsen 2013
Ciardelli 2017
Inquisitive Semantics

\[\top \land \bot \models \top \]

Groenendijk & Stokhof 1984
Roelofsen 2013
Ciardelli 2017
Alternative Semantics

\(p \land q \vdash p \)

Groenendijk & Stokhof 1984
Roelofsen 2013
Ciardelli 2017
Alternative Semantics

\[?p \land ?q \vdash ?p \]

Diagram: Four small circles on the left are grouped to resemble a rectangle, which is equal to a larger rectangle on the right.
Alternative Semantics

\[?p \land ?q \models ?p \]

but \(\sqsubseteq \) is not antisymmetric
Alternative Semantics

\(?p \land ?q \models ?p\)

but \(\subseteq\) is not antisymmetric
Alternative Semantics

$p \lor q \neq p \land q \lor (p \land q)$

$p \land q \neq ?p \cap ?q$

$?p \land ?q \models ?p$

Inquisitive Semantics

$p \lor q = p \lor q \land (p \land q)$

$p \land q = ?p \cap ?q$

$?p \land ?q \models ?p$

$?p \land ?q \subseteq ?p$
Alternative Semantics

\[p \lor q \neq p \land q \lor (p \land q) \]

\[?p \land ?q \neq ?p \land ?q \]

\[?p \land ?q \models ?p \]

Inquisitive Semantics

\[p \lor q = p \land q \lor (p \land q) \]

\[?p \lor ?q \models ?p \land ?q \]

\[?p \land ?q \models ?p \]
Alternative Semantics

\[p \lor q \neq p \land (p \land q) \]

\[p \land q \neq p \lor q \]

\[p \land ?q \models ?p \]

Inquisitive Semantics

\[p \lor q = p \land (p \land q) \]

\[p \land q = p \lor q \]

\[p \land ?q \models ?p \]

\[p \land ?q \models ?p \]

\[p \lor ?q \models ?p \]

\[p \land ?q \models ?p \]
Alternative Semantics

\(p \lor q \neq p \lor q \land (p \land q) \)

\(\neg p \lor q \neq \neg p \lor q \land (p \land q) \)

\(\neg p \lor q \vdash \neg p \land q \)

\(\neg p \lor q \land (p \land q) \neq \neg p \lor q \land (p \land q) \)

Inquisitive Semantics

\(p \lor q \equiv p \lor q \land (p \land q) \)

\(\neg p \lor q \equiv \neg p \lor q \land (p \land q) \)

\(\neg p \lor q \vdash \neg p \land q \)

\(\neg p \lor q \land (p \land q) \subseteq \neg p \lor q \land (p \land q) \)
Alternative Semantics

\[p \lor q \neq p \lor q \land (p \land q) \]

\[?p \lor ?q \neq ?p \land ?q \]

\[?p \land ?q \models ?p \]

\[\not\models \]

Inquisitive Semantics

\[p \lor q = p \lor q \land (p \land q) \]

\[?p \lor ?q = ?p \land ?q \]

\[?p \land ?q \models ?p \]

\[\subseteq \]
This talk

- Not sure about explanatory value of algebraic considerations...

Main question:
How (else) might we motivate something like Alternative Semantics?
This talk

- Not sure about explanatory value of algebraic considerations...

Main question:
How (else) might we motivate something like Alternative Semantics?

- E.g. why would ‘or’ but not ‘and’ introduce alternatives?
On the possible pragmatic origins of inquisitiveness

Matthijs Westera
Universitat Pompeu Fabra
(University of Amsterdam)
Outline

1. Background & Motivation
2. **Attentional pragmatics**
3. Deriving something like alternative Semantics
Attention

(1) John was at the party or Mary was.
Attention

(1) John was at the party
or Mary was.

Attentional content:
Uttering a sentence draws attention
to the (classical) denotations of
all its parts.
Attentional intent:

Set of things (propositions) to which the speaker intended to draw attention.
Attentional intent:

Set of things (propositions) to which the speaker intended to draw attention.

Listeners & linguists:

- Which subset of the attentional content is the attentional intent?

(Westera 2017)
Attentional Pragmatics

I-maxims: For an informational intent \(p \) and a \(QUD \ Q \):

\[
\begin{align*}
I-\text{Quality}(p) &= \square^\uparrow p \\
I-\text{Relation}(Q, p) &= Q(p) \\
I-\text{Quantity}(Q, p) &= \forall q \left(\left(I-\text{Quality}(q) \land I-\text{Relation}(Q, q) \right) \rightarrow (p \subseteq q) \right)
\end{align*}
\]
Attentional Pragmatics

I-maxims: For an informational intent p and a QUDE Q:

- I-Quality(p) = $\Box^\vee p$
- I-Relation(Q, p) = $Q(p)$
- I-Quantity(Q, p) = $\forall q \left(\left(I$-Quality(q) $\land I$-Relation(Q, q) $\right) \rightarrow (p \subseteq q) \right)$

A-maxims: For an attentional intent A and a QUDE Q:

- A-Quality(A) = $\forall a \left(A(a) \rightarrow \Diamond^\vee a \right)$
 \hspace{10cm} (first attempt)
- A-Relation(Q, A) = $\forall a (A(a) \rightarrow Q(a))$
- A-Quantity(Q, A) = $\forall a \left(\left(A$-Quality($\{a\}$) $\land A$-Relation($Q, \{a\}$) $\right) \rightarrow A(a) \right)$

(Westera 2017)
Attentional Pragmatics

I-maxims: For an informational intent p and a $\text{QUDE} \ Q$:

I-Quality(p) = $\Box^\land p$

I-Relation(Q, p) = $Q(p)$

I-Quantity(Q, p) = $\forall q \left(\left(\begin{array}{c} I$-Quality($q$) \\
I-Relation(Q, q) \end{array} \right) \rightarrow (p \subseteq q) \right)$

A-maxims: For an attentional intent A and a $\text{QUDE} \ Q$:

A-Quality(A) = $\forall a \left(A(a) \rightarrow \diamond (\lor a \land \forall b ((Q(b) \land b \subseteq a) \rightarrow \neg \lor b)) \right)$

A-Relation(Q, A) = $\forall a (A(a) \rightarrow Q(a))$

A-Quantity(Q, A) = $\forall a \left(\left(\begin{array}{c} A$-Quality($\{a\}$) \\
A$-Relation($Q, \{a\}$) \end{array} \right) \rightarrow A(a) \right)$

(Westera 2017)
Illustration: Exhaustivity (1/2)
Illustration: Exhaustivity (1/2)

QUD

pvq

A-Quantity
Illustration: Exhaustivity (1/2)
Illustration: Exhaustivity (1/2)

QUD \(p \lor q \) A-Quantity intersection

\(p \lor q \land (p \land q) \)
Illustration: Exhaustivity (1/2)
Illustration: Exhaustivity (1/2)
Illustration: Exhaustivity (2/2)
Outline

1. Background & Motivation
2. Attentional pragmatics
3. Deriving something like Alternative Semantics
Example (1/6)

(3) John was at the party and Mary was there too.

• Attentional content:
 - {..., Pj, Pm, Pj∧Pm}
Example (1/6)

(3) John was at the party and Mary was there too.

• Attentional content:
 - {..., Pj, Pm, Pj∧Pm}

• Attentional intent:
 - {Pj, Pm}?
 - {Pj∧Pm}?
Example (1/6)

(3) John was at the party and Mary was there too.

- **Attentional content:**
 - {..., Pj, Pm, Pj∧Pm}

- **Attentional intent:**
 - {Pj, Pm}?
 - {Pj∧Pm}?
 - {Pj∧Pm}?
(3) John was at the party and Mary was there too.

- Attentional content:
 - $\{\ldots, P_j, P_m, P_j \land P_m\}$
- Attentional intent:
 - $\{P_j, P_m\}$?
 - $\{P_j \land P_m\}$?
 - $\{P_j, P_m, P_j \land P_m\}$?
Example (1/6)

(3) John was at the party and Mary was there too.

• Attentional content:
 - {..., Pj, Pm, Pj∧Pm}

• Attentional intent:
 - {Pj, Pm}?
 - {Pj∧Pm}
 - {Pj, Pm, Pj∧Pm}?
Example (2/6)

(4) John was at the party.

• Attentional content:
 - {..., Pj}
Example (2/6)

(4) John was at the party.

• Attentional content:
 - {..., Pj}

• Attentional intent:
 - {Pj}
Example (2/6)

(4) John was at the party.

• Attentional content:
 - {..., Pj}

• Attentional intent:
 - {Pj}
 - No other possibilities
Example (3/6)

(5) John wasn’t at the party.

• Attentional content:
 - {..., ¬Pj, Pj}
Example (3/6)

(5) John wasn’t at the party.

• Attentional content:
 - \{..., \neg P_j, P_j\}

• Attentional intent:
 - \{\neg P_j\}

cf. Krifka 2013
Example (3/6)

(5) John wasn’t at the party.

• Attentional content:
 - {..., \neg Pj, Pj}

• Attentional intent:
 - {\neg Pj}
 - {Pj}?
Example (3/6)

(5) John wasn’t at the party.

- **Attentional content:**
 - \{..., \neg P_j, P_j\}

- **Attentional intent:**
 - \{\neg P_j\}
 - \{P_j\}?
Example (4/6)

(6) John was at the party or Mary was there.

- Attentional content:
 - \{..., P_j, P_m, P_j \lor P_m\}
Example (4/6)

(6) John was at the party or Mary was there.

• Attentional content:
 - \{..., \text{P}_j, \text{P}_m, \text{P}_j \lor \text{P}_m\}

• Attentional intent:
 - \{\text{P}_j, \text{P}_m\}?
 - \{\text{P}_j \lor \text{P}_m\}?
 - \{\text{P}_j, \text{P}_m, \text{P}_j \lor \text{P}_m\}?
Example (4/6)

(6) John was at the party or Mary was there.

• Attentional content:
 - {..., P_j, P_m, $P_j \lor P_m$}

• Attentional intent:
 - {P_j, P_m}?
 - {$P_j \lor P_m$}?
 - {P_j, P_m, $P_j \lor P_m$}?
Example (4/6)

(6) John was at the party or Mary was there.

- Attentional content:
 - {..., Pj, Pm, Pj ∨ Pm}

- Attentional intent:
 - {Pj, Pm}?
 - {Pj ∨ Pm}?
 - {Pj, Pm, Pj ∨ Pm}?

- Prediction: Focus disambiguates...
Example (5/6)

(7) John was at the party, or both John and Mary

• Attentional content:
 - \{..., Pj, Pm, Pj \land Pm\}
Example (5/6)

(7) John was at the party, or both John and Mary

• Attentional content:
 - \{..., P_j, P_m, P_j\land P_m\}

• Attentional intent:
 - \{P_j, P_j\land P_m\}
 - \{P_j\}
 - \{P_j\land P_m\}?
 - \{P_j, P_m, P_j\land P_m\}?
Example (5/6)

(7) John was at the party, or both John and Mary

• Attentional content:
 - \{..., P_j, P_m, P_j \land P_m\}

• Attentional intent:
 - \{P_j, P_j \land P_m\}
 - \{P_j\}
 - \{P_j \land P_m\}?
 - \{P_j, P_m, P_j \land P_m\}?
Example (5/6)

(7) John was at the party, or both John and Mary

• Attentional content:
 - {..., Pj, Pm, Pj∧Pm}

• Attentional intent:
 - {Pj, Pj∧Pm}
 - {Pj}
 - {Pj∧Pm}?
 - {Pj, Pm, Pj∧Pm}?
General result (1/2)

- For any utterance that complies with the maxims wrt a QUD closed under intersection:

\[
\text{informational intent} = \bigcup (\text{attentional intent})
\]
Example (6/6)

(8) It is not the case that John was there and Mary was there.

• Attentional content:
 - \{..., P_j, P_m, P_j \land P_m, \neg P_j \land P_m\}
Example (6/6)

(8) It is not the case that John was there and Mary was there.

- Attentional content:
 - {..., Pj, Pm, Pj ∧ Pm, ¬Pj ∧ Pm}

- Attentional intent:
 - {¬(Pj ∧ Pm)}
 - {¬Pj, ¬Pm}?
Example (6/6)

(8) It is not the case that John was there and Mary was there.

• Attentional content:
 - \{\ldots, P_J, P_m, P_J \land P_m, \neg P_J \land P_m\}

• Attentional intent:
 - \{\neg (P_J \land P_m)\}
 - \{\neg P_J, \neg P_m\}?
General result (2/2)

- For an utterance in disjunctive normal form, wrt a QUD containing its literals, closed under intersection and union:
General result (2/2)

- For an utterance in disjunctive normal form, wrt a QUD containing its literals, closed under intersection and union:

 \[
 \text{attentional intent} = \text{the set of all disjuncts}
 \]
Outline

1. Background & Motivation
2. Attentional pragmatics
3. Deriving something like alternative Semantics
Discussion (1/2)

- Something like Alternative Semantics can be derived from a pragmatics of attention plus a classical semantics.
Discussion (1/2)

- Something like Alternative Semantics can be derived from a pragmatics of attention *plus a classical semantics*.
- Sensitivity to prosodic focus.
Discussion (1/2)

- Something like Alternative Semantics can be derived from a pragmatics of attention plus a classical semantics.
- Sensitivity to prosodic focus.
- Some more difficult cases have been left out (but see Westera 2017):
 - Cases that violate a maxim;
 - Conjunctions of disjunctions;
 - Quantifiers;
 - Interrogatives.
Discussion (2/2)

- By drawing attention to possible answers to a QUD (without asserting them), an ‘issue’ is raised.
Discussion (2/2)

- By drawing attention to possible answers to a QUD (without asserting them), an ‘issue’ is raised.
 - To find its minimal resolving answers, downward-close it.
Discussion (2/2)

• By drawing attention to possible answers to a QUD (without asserting them), an ‘issue’ is raised.
 - To find its minimal resolving answers, downward-close it.
 - (To find its exhaustive answers, turn it into a partition.)
• By drawing attention to possible answers to a QUD (without asserting them), an ‘issue’ is raised.
 - To find its minimal resolving answers, downward-close it.
 - (To find its exhaustive answers, turn it into a partition.)

• Natural language constructions may be sensitive to any of these aspects.
Enabled by funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 715154).

And in an earlier stage from the NWO project ‘the Inquisitive Turn’.
A more difficult case

(9) John or Mary was there, and Bill or Sue.

- Attentional intent:
 - Option A: \(\{P_j \land P_b, P_j \land P_s, P_m \land P_b, P_m \land P_s\} \)?
 - Option B: \(\{P_j, P_m\} \land \{P_b, P_s\} \)