
Computing Dynamic Meanings

Adrian Brasoveanu, Jakub Dotlačil1

November 29, 2016

1ACKNOWLEDGMENTS to be inserted here . . . This document has been created with LaTeX and
PythonTex (Poore, 2013). The usual disclaimers apply.

2

Contents

1 Introduction 7
1.1 Using pyactr – people familiar with Python . 7
1.2 Using pyactr – beginners . 7

2 Basics of ACT-R 9
2.1 Introduction . 9
2.2 Why do we care about ACT-R, and cognitive architectures and modeling in

general . 10
2.3 Knowledge in ACT-R . 11

2.3.1 Representing declarative knowledge: chunks 11
2.3.2 Representing procedural knowledge: productions 12

2.4 Using pyactr . 12
2.5 Writing chunks in pyactr . 12
2.6 Modules and buffers . 15
2.7 Writing productions in pyactr . 16
2.8 More examples on queries . 18
2.9 Running a model . 19
2.10 Example 2 – a top-down parser . 20

2.10.1 First steps in the model . 21
2.10.2 Production rules . 23
2.10.3 Running the model . 27
2.10.4 Stepping through a model . 31
2.10.5 Exercises . 32

2.11 The environment in ACT-R . 33
2.11.1 Introduction . 33
2.11.2 A simple lexical decision task . 33
2.11.3 Motor module . 35
2.11.4 Vision in ACT-R . 39
2.11.5 Manual processes in ACT-R . 41
2.11.6 Exercises . 41

3 Performance 49
3.1 Introduction . 49
3.2 Understanding the (basic) activation equation 49

3.2.1 The base-level learning equation . 50

3

4 CONTENTS

3.2.2 The attentional weighting equation . 56
3.2.3 The associative strength equation . 56

3.3 Activation, probability of retrieval, and latency of retrieval 56
3.3.1 Probability of retrieval . 59
3.3.2 Latency of retrieval . 63

3.4 Modelling performance . 65
3.4.1 Modelling lexical decision tasks . 65

3.5 pyactr model of lexical decision . 68
3.6 Exercises . 73

3.6.1 Exercise 1 . 73

List of Figures

1.1 Opening Bash in PythonAnywhere. 8

3.1 Ebbinghaus retention data . 52
3.2 Base-level activation as a function of time . 55
3.3 Base-level activation, probability of retrieval, and latency of retrieval as a func-

tion of time . 58
3.4 Base-level activation, probability of retrieval, and odds of retrieval as a func-

tion of time . 60
3.5 Probability and odds of retrieval as a function of activation 62
3.6 Time of retrieval as a function of activation and as a function of odds of retrieval 64
3.7 Model fitting of Exp. 1, Murray and Forster (2004). The solid line represents

the best fit of the f parameter, the dashed line is the best fit of the d parameter,
the dotted line is the best fit of log-frequency to latencies. 68

5

6 LIST OF FIGURES

Chapter 1

Introduction

– overview of the book, intended audience, getting started (installation instructions etc.)

1.1 Using pyactr – people familiar with Python

If you are familiar with Python, you can install pyactr (the Python package that enables
ACT-R) and proceed to Chapter 2. pyactr is a Python 3 package and can be installed using
pip (for Python 3):

$ pip3 install pyactr 1

Alternatively, you can download the package here: https://github.com/jakdot/pyactr
and follow the instructions there to install the package.

If you are not familiar with Python, you should consider the steps below.

1.2 Using pyactr – beginners

pyactr is a package in Python 3. To get started, you should consider a web-based service for
Python 3 like PythonAnywhere. In this type of services, computation is hosted on separate
servers and you don’t have to install anything on your computer (of course, you’ll need
Internet access). If you find you like working with Python and pyactr, you can install them
on your computer at a later point together with a good text editor for code – or install an
integrated desktop environment (IDE) for Python – a common choice is anaconda, which
comes with a variety of ways of working interactively with Python (IDE with Spyder as the
editor, ipython notebooks etc.). But none of this is required to run pyactr and the code in this
book.

a. Go to www.pythonanywhere.com and sign up there.

b. You’ll receive a confirmation e-mail. Confirm your account.

c. Log into your account on www.pythonanywhere.com.

7

https://github.com/jakdot/pyactr
www.pythonanywhere.com
www.pythonanywhere.com

8 CHAPTER 1. INTRODUCTION

d. You should see a window like the one below. Click on Bash (below “Start a new Con-
sole”).

Figure 1.1: Opening Bash in PythonAnywhere.

e. In Bash, type:

$ pip3 install --user pyactr 1

This will install pyactr in your Python account (not on your computer).

f. Go back to Consoles. Start Python by clicking on any version higher than 3.2.

g. A console should open. Type:

import pyactr 1

If no errors appear, you are set and can proceed to Chapter 2.

Throughout the book, we will introduce and discuss various ACT-R models coded in
Python. You can either type them in line by line or even better, load them as files in your
session on PythonAnywhere. Scripts are uploaded under the tab Files. You should be aware
that the free account of PythonAnywhere allows you to run only two consoles, and there is a
limit on the amount of CPU you might use per day. The limit should suffice for the tutorials
but if you find this too constraining, you should consider installing Python (Python 3) and
pyactr on your computer and running scripts directly there.

Chapter 2

Basics of ACT-R

2.1 Introduction

ACT-R is a cognitive architecture. It is a theory of the structure of the brain that explains and
predicts human cognition. The theory of ACT-R has been implemented in several program-
ming languages, including Java (jACT-R, Java ACT-R), Swift (PRIM), Python2 (ccm). The
canonical implementation has been created and is maintained in Lisp. In this book, we will
use a novel Python (Python3) implementation (pyactr). This implementation is very close
to the official implementation in Lisp, so once you learn it, you should be able to transfer
your skills very quickly to code models in Lisp ACT-R if you wish to do that. At the same
time, since Python is currently much more widespread than Lisp, coding parts that do not
directly pertain to the ACT-R model (like data manipulation and data munging, interaction
with environment etc.) are much better supported than the same tasks in Lisp. In that way,
the programming language stands less in a way of your learning ACT-R than it does in case
of Lisp, and you can fully focus on learning nuts and bolts of the cognitive models.

This book and the models we build and discuss are not intended as a reference manual
for ACT-R. For learning theories of the model, rather than programming in the model itself,
consider (Anderson, 1990; Anderson and Lebiere, 1998; Anderson et al., 2004; Anderson,
2007, a.o.). The main goal of this book is to take a hands-on approach to introducing ACT-
R by constructing models that solve (or attempt to solve) linguistic problems. We will mix
theoretical notes and pyactr code.

In general, we will display python code and its associated output in numbered examples
and / or numbered blocks.

For example, when we want to discuss the code, we will display it as:

(1) 2 + 2 == 4 1

3 + 2 == 6 2

Note the numbers on the left – we can use them to refer to specific lines of code, e.g.: the
equality in (1), line 1 is true, while the equality in (1), line 2 is false. We will sometime also
include in-line Python code, displayed like this: 2 + 2 == 4.

When we want to discuss both the code and its output, we will display it in the same
way it would appear in your interactive Python interpreter, for example:

9

10 CHAPTER 2. BASICS OF ACT-R

[py1] >>> 2 + 2 == 4 1

True 2

>>> 3 + 2 == 6 3

False 4

Once again, all lines are numbered (both the Python code and its output) so that we can
refer back to it.

2.2 Why do we care about ACT-R, and cognitive architectures and
modeling in general

Linguistics is part of the larger field of cognitive science. So the answer to this question is
one that applies to cognitive science in general. Here’s one recent version of the argument,
taken from chapter 1 of Lewandowsky and Farrell (2010). The argument is an argument for
process models as the proper scientific target to aim for (roughly, models of human language
performance), rather than characterization models (roughly, models of human language com-
petence).

Both of them are better than simply descriptive models, “whose sole purpose is to replace
the intricacies of a full data set with a simpler representation in terms of the model’s parame-
ters. Although those models themselves have no psychological content, they may well have
compelling psychological implications. [Both characterization and process models] seek to
illuminate the workings of the mind, rather than data, but do so to a greatly varying ex-
tent. Models that characterize processes identify and measure cognitive stages, but they are
neutral with respect to the exact mechanics of those stages. [Process] models, by contrast,
describe all cognitive processes in great detail and leave nothing within their scope unspec-
ified. Other distinctions between models are possible and have been proposed [. . .], and
we make no claim that our classification is better than other accounts. Unlike other accounts,
however, our three classes of models map into three distinct tasks that confront cognitive sci-
entists. Do we want to describe data? Do we want to identify and characterize broad stages
of processing? Do we want to explain how exactly a set of postulated cognitive processes
interact to produce the behavior of interest?” (Lewandowsky and Farrell, 2010, 25)

In more detail: “Like characterization models, [the power of process models] rests on hy-
pothetical cognitive constructs, but by providing a detailed explanation of those constructs,
they are no longer neutral. [. . .] At first glance, one might wonder why not every model
belongs to this class. After all, if one can specify a process, why not do that rather than just
identify and characterize it? The answer is twofold. First, it is not always possible to specify
a presumed process at the level of detail required for [a process] model [. . .] Second, there
are cases in which a coarse characterization may be preferable to a detailed specification.
For example, it is vastly more important for a weatherman to know whether it is raining or
snowing, rather than being confronted with the exact details of the water molecules’ Brow-
nian motion. Likewise, in psychology [and linguistics!], modeling at this level has allowed
theorists to identify common principles across seemingly disparate areas. That said, we
believe that in most instances, cognitive scientists would ultimately prefer an explanatory
process model over mere characterization.” (Lewandowsky and Farrell, 2010, 19)

2.3. KNOWLEDGE IN ACT-R 11

2.3 Knowledge in ACT-R

There are two types of knowledge in ACT-R: declarative knowledge and procedural knowl-
edge (see also Newell 1990).

The declarative knowledge represents our knowledge of facts. For example, if one knows
what the capital of the Netherlands is, this would be represented in one’s declarative knowl-
edge.

Procedural knowledge is knowledge that we display in our behavior (cf. Newell 1973).
It is often the case that our procedural knowledge is internalized, we are aware that we have
it but we would be hard pressed to explicitly and precisely describe it. Driving, swimming,
riding a bicycle are examples of procedural knowledge. Almost all people who can drive
/ swim / ride a bicycle do so in an automatic way. They are able to do it but they might
completely fail to describe how exactly they do it when asked. This distinction is closely
related to the distinction between explicit (‘know that’) and implicit (‘know how’) knowledge
in analytical philosophy (see Ryle 1949 and Polanyi 1967; see also Davies 2001 and references
therein for more recent discussions).

The two parts of knowledge in ACT-R are represented in two very different ways. The
declarative knowledge is instantiated in chunks. The procedural knowledge is instantiated
in production rules, or productions for short.

2.3.1 Representing declarative knowledge: chunks

!!! CONTINUE HERE
Chunks are lists of attribute-value pairs, familiar to linguists from phrase structure gram-

mars (e.g., LFG and HPSG). However, in ACT-R, we use the term slot instead of attribute. For
example, we might think of one’s knowledge of the word car as a chunk of type WORD with
the value /ka:/ for the slot phonology, the value [[car]] for the slot meaning, the value noun for
the slot category and the value sg for the slot number.

The slot values are the primitive elements /ka:/, JcarK, noun and sg, respectively. Chunks
are boxed, whereas primitive elements are simple text. A simple arrow () signifies that
the chunk at the start of the arrow has the value at the end of the arrow in the slot with the
name that labels the arrow.

(2) WORD/ka:/ JcarK

noun

sg

PHONOLOGY MEANING

CATEGORY

NUMBER

The graph representation will be useful when we introduce activations and more gener-
ally, ACT-R subsymbolic components. The same chunk can be represented as an attribute-
value matrix (AVM), and we’ll overwhelmingly use AVM representations from now on.

12 CHAPTER 2. BASICS OF ACT-R

(3)

WORD

PHONOLOGY: /ka:/
MEANING: JcarK
CATEGORY: noun
NUMBER: sg

2.3.2 Representing procedural knowledge: productions

A production is an if-statement. It describes an action that takes place if the if-part is satisfied.
For example, agreement on a verb can be (abstractly) expressed as follows: IF subject number
in currently constructed sentence is sg THEN verb number in currently constructed sentence
is sg. Of course, this is only half of the story – another rule would state: IF subject number
in currently constructed sentence is pl THEN verb number in currently constructed sentence
is pl. To repeat the basic intuition about the construction of these rules: productions specify
conditions (the if-part of the statement); if these conditions are true, then actions take place
(the THEN part of the statement).

Sticking with the example in the previous paragraph, it might look like a roundabout
way of specifying agreement. Could we not state that the verb has the same number that
the subject has? In fact, we can, if we use variables. Variables are assigned their value when
they appear on the left side of a production. The variable keeps its value inside a rule (i.e.,
a rule is the scope for any variable assignment). Given that (and given the convention that
variables are signaled in ACT-R using ‘=’), we could write: IF subject number in currently
constructed sentence is =x THEN verb number in currently constructed sentence is =x.

2.4 Using pyactr

After this brief introduction, we will continue by combining the theoretical part of ACT-R
with discussing how it is implemented in pyactr. We will begin with describing details of
declarative knowledge in ACT-R and its implementation in pyactr. After that we turn to the
discussion of modules and buffers, which is needed before we can turn to the second type of
knowledge in ACT-R, productions.

But as the very first thing, we have to import the relevant package:

[py2] >>> import pyactr as actr 1

We use the as keyword, so that every time we use the pyactr package, we can write actr

instead of the longer pyactr.

2.5 Writing chunks in pyactr

There is one thing we have to do before writing chunks themselves: we should start by spec-
ifying a chunk type and all the slots you think it should have. This will help you be clear
about your intentions on what should be carried in declarative memory from the start. Let’s
create a chunk type that will correspond to our knowledge of words, as indicated above.

2.5. WRITING CHUNKS IN PYACTR 13

Needless to say, we don’t strive here for the linguistically realistic theory of word represen-
tations at this point. It is just a toy example, showing the inner workings of ACT-R. Anyway,
here is our chunk type:

[py3] >>> actr.chunktype("word", "phonology, meaning, category, number") 1

The function chunktype creates a type word, which consists of the following slots: phonology,
meaning, category, number. The type itself is written as the first argument of the function, the
slots are written as the second argument and are separated by commas.

After declaring the chunk type, we can create new chunks using this type.

[py4] >>> car = actr.makechunk(nameofchunk="car",\ 1

... typename="word",\ 2

... phonology="/ka:/",\ 3

... meaning="[[car]]",\ 4

... category="noun",\ 5

... number="sg") 6

>>> print(car) 7

word(category=noun, meaning=[[car]], number=sg, phonology=/ka:/) 8

The chunk is created using the function makechunk. Every makechunk has two fixed ar-
guments: nameofchunk ([py4], line 1), typename ([py4], line 2). Furthermore, it has slot-value
pairs, present in the chunk. Lines 3-6 show how values of slots are specified. You do not
have to specify all the slots that a chunk of a particular type should have (in that case, the
particular slots are empty). We finally print the chunk (line 7). Notice that the order of slot-
value pairs is different than in instantiating the chunk (i.e., we defined phonology as first, but
it appears as the last in the output). This is because chunks are unordered lists of slot-value
pairs. Python assumes some arbitrary (alphabetic) ordering when printing chunks.

Specifying chunk types is optional. In fact, the information about chunk type is relevant
for pyactr, but it has no theoretical significance (it’s just a syntactic sugar). However, it is
recommended, as doing so might clarify what kind of attribute-value matrices you will need
in your model. Also if you don’t specify the chunk type that your chunk uses, Python prints
a warning message. This might help you debug your code (e.g., if you accidentally named
your chunk “morphreme”, you would get a warning message that a new chunk type has
been created – probably, not what you wanted; warnings are not displayed in book). (See
Python documentation for more on warnings.)

It is also recommended that you only use attributes you defined first (or you used in the
first chunk of a particular type). However, you can always add new attributes along the way
(it is assumed that other chunks up to now had no value for those attributes in that case).
For example, imagine we realize that it’s handy to specify what syntactic function a word is
part of. We didn’t have that in our example of car. So let’s create a new chunk, car2, which is
like car but it adds this extra piece of information (and we assume this word has been used
as part of subject):

[py5] >>> car2 = actr.makechunk(nameofchunk="car2",\ 1

... typename="word",\ 2

... phonology="/ka:/",\ 3

... meaning="[[car]]",\ 4

14 CHAPTER 2. BASICS OF ACT-R

... category="noun",\ 5

... number="sg",\ 6

... syncat="subject") 7

>>> print(car2) 8

word(category=noun, meaning=[[car]], number=sg, phonology=/ka:/, syncat=subject) 9

Line 7 in [py5] is the new part. We are adding a new slot syncat, and assign it the value
subject. The command goes through successfully (as shown by the fact that we can print
car2), but a warning message is issued (not displayed above), namely “UserWarning: Chunk
type word is extended with new attributes.”

There is another way of specifying a chunk, which is maybe more intuitive: using chunkstring.
In that case, you write down the chunk type after the isa-attribute, and attribute value pairs
are written after each other, separated only by a comma.

[py6] >>> car2 = actr.makechunk(nameofchunk="car2",\ 1

... typename="word",\ 2

... phonology="/ka:/",\ 3

... meaning="[[car]]",\ 4

... category="noun",\ 5

... number="sg",\ 6

... syncat="subject") 7

>>> print(car2) 8

word(category=noun, meaning=[[car]], number=sg, phonology=/ka:/, syncat=subject) 9

We are using the new function chunkstring. It has the same power as makechunk. The
argument string defines what the chunk consists of. The value pairs are written as a plain
string. Notice that we use three quote marks, rather than one. These signal to Python that
the string can appear on more than one line. The first slot-value pair ([py6], line 2) is special –
it specifies the type of chunk, and a special slot is used for this, isa. Notice that the resulting
chunk is identical to the previous one, as shown on [py6], line 8.

As we mentioned above, productions work by testing whether a particular condition is
satisfied and then acting upon that. In practice, for most parts this means that productions
check chunks. Thus, we have to define comparisons across chunks. This is done in an intu-
itive way: one chunk is identical to another if they have the same attributes and they have
the same values for all the attributes. A chunk a is part of a chunk b if a has all the attributes
of b and a has the same values as b in those attributes (however, chunk b might have extra
attribute-value pairs).

pyactr overloads standard comparison operators for these tasks. The code below and its
output should be self-explanatory:

[py7] >>> car2 == car2 1

True 2

>>> car == car2 3

False 4

>>> car <= car2 5

True 6

>>> car < car2 7

True 8

>>> car2 < car 9

False 10

2.6. MODULES AND BUFFERS 15

Note that chunk types are irrelevant for deciding part-of relations. This might be counter-
intuitive, but that’s just how ACT-R works – chunk types are ‘syntactic sugar’ useful only
for the human modeler. This means that if we define a new chunk type that happens to have
the same slots as another chunk type, one might be part of the other:

[py8] >>> actr.chunktype("synlabel", "category") 1

>>> noun = actr.makechunk(nameofchunk="noun", 2

... typename="synlabel", 3

... category="noun") 4

>>> noun < car2 5

True 6

2.6 Modules and buffers

Chunks do not live in a vacuum, they are always part of an ACT-R architecture, which
consists of modules and buffers. Each module in ACT-R serves a different task. Further-
more, modules cannot be accessed or updated directly in ACT-R; rather, this always happens
through the use of a buffer, and each module comes equipped with one such buffer. A buffer,
in its turn, is a carrier of exactly one chunk.

In this chapter, we will be concerned with only two modules, the goal module (repre-
senting one’s goals) and the declarative module (representing one’s declarative knowledge).
These are the two most common modules in ACT-R. They appear with their buffers, which
are called goal and retrieval, respectively.

For the sake of concreteness, let’s create the declarative module and the goal and retrieval
buffers. And since it does not make sense to think about modules without instantiating a
model in which these modules work, let’s start by doing just that:

[py9] >>> agreement = actr.ACTRModel() 1

The command above instantiated an ACTRModel as the value of the variable agreement.
We will now be filling in details of this model with information about buffers, models, and
productions.

We start by creating relevant modules and buffers inside this model.

[py10] >>> dm = agreement.DecMem() 1

>>> retrieval = agreement.dmBuffer(name="retrieval", declarative_memory=dm) 2

>>> g = agreement.goal(name="g") 3

• DecMem instantiates declarative memory. Notice that DecMem is an attribute of the model
agreement. We just specified that this will be the declarative memory of our model and
we bound it to the variable dm.

• dmBuffer instantiates the buffer of the declarative memory in the model. We fill in two
arguments of this attribute. The second argument says to which declarative memory
the buffer should be connected (i.e., from which memory it should be retrieving). The
first argument says under what name the buffer will be seen in the model. The name
of a buffer is needed if we are going to refer to these buffers later on in productions
(without that productions would not be able to manipulate buffers). Notice also that

16 CHAPTER 2. BASICS OF ACT-R

the variable we bind this buffer to has the same name as the name used in the model
(retrieval). This is just convenience.

• goal instantiates the goal buffer.

The declarative memory was just instantiated, so it should be empty. Let’s check that:

[py11] >>> dm 1

{} 2

We might want to add the best chunk we created so far – car2:

[py12] >>> dm.add(car2) 1

>>> print(dm) 2

{word(category=noun, meaning=[[car]], number=sg, phonology=/ka:/, syncat=subject): {0.0}}3

• Chunks are added by the attribute add on the declarative memory. As the argument,
we specify a chunk (or chunks) that should be added.

dm now shows the chunk we added. It also ties the chunk to the time point at which it
was introduced. Since we did not start any model simulation, the time point is 0 right now.

2.7 Writing productions in pyactr

In their core, productions are IF-statements.
Productions have two parts: left-hand side rules (tests) precede the double arrow (==>);

right-hand side rules (actions) follow the arrow.
Let’s now create productions that simulate a verb agreement.1 We will simplify things a

lot. We will only care about 3rd person agreement, present tense. We will do no syntactic
parsing, just assume that our memory includes only the subject of the clause and we have
the verb of the clause at our disposal. Since our goal is creating verb agreement, we should
assume that the verb itself is all the time in the goal. What should agreement do? One
production should state that IF goal has a verb and task is to agree THEN the subject should
be retrieved. The second production should state that IF subject number in retrieval is =x

THEN verb number in goal is =x. The third rule should say that if the verb is assigned a
number the task is done.

Let’s write down the second rule first.

[py13] >>> agreement.productionstring(name="agree", string=""" 1

... =g> 2

... isa verbagreement 3

... task trigger_agreement 4

... category 'verb' 5

... =retrieval> 6

1The full code for this model is also available as u1_agreement on http://www.jakubdotlacil.com/

tutorials and in the appendix to this chapter.

u1_agreement
http://www.jakubdotlacil.com/tutorials
http://www.jakubdotlacil.com/tutorials

2.7. WRITING PRODUCTIONS IN PYACTR 17

... isa word 7

... category 'noun' 8

... syncat 'subject' 9

... number =x 10

... ==> 11

... =g> 12

... isa verbagreement 13

... task done 14

... category 'verb' 15

... number =x 16

... """) 17

• Productions are created by the command productionstring and they have two argu-
ments (later on, we will see that there is a third argument): name (the name of the
production) and string (the string that specifies what the production does).

2.–11. The left hand side of the rule and the right hand side of the rule are separated by ==>.
That is, what appears before ==> is tests, what appears after ==> are actions. Second,
tests and actions have always the same structure: first, you specify what buffer should
be considered: this is done by writing the name of the buffer between = and > (see line
2 and 6). The name of the buffer has to match the name you used when you created
these buffers. After choosing the buffer you specify a chunk (lines 3–5 and lines 7–10).
In case of tests the chunks specified in a rule must be part of a chunk that is present
in the corresponding buffer (i.e., the part-of test, discussed in Sect. writing-chunks-
in-pyactr, must be true between the chunk specified in the test and the chunk in the
corresponding buffer). Chunks in productions are written in the same way as chunks
in the function chunkstring: you write slot-value pairs, and each slot and value are
separated by one or more spaces. (We also wrote each pair on a separate line, but that
is just aesthetics.) The isa slot is used to specify chunk types.

12.–17. If all tests are true, then a chunk in a buffer is modified as specified after ==>.

All in all, we can read the rule agree as follows: IF the goal buffer has a chunk with cate-
gory verb and the task is to trigger agreemnt AND the retrieval buffer has a chunk with the
category noun and syncat subject and it has some number, assigned to x, THEN modify the
chunk in the goal buffer so that it carries the number that was assigned to x.

The other rule should appear as follows:

[py14] >>> agreement.productionstring(name="retrieve", string=""" 1

... =g> 2

... isa verbagreement 3

... task agree 4

... category 'verb' 5

... ?retrieval> 6

... buffer empty 7

... ==> 8

... =g> 9

... isa verbagreement 10

... task trigger_agreement 11

... category 'verb' 12

18 CHAPTER 2. BASICS OF ACT-R

... +retrieval> 13

... isa word 14

... category 'noun' 15

... syncat 'subject' 16

... """) 17

6. Instead of =retrieval> in the test, we write ?retrieval>. While =retrieval> tests whether
the retrieval carries a particular chunk ?retrieval> queries the buffer directly. The
query in this case checks whether the buffer is empty (i.e., it carries no chunk). Strictly
speaking, this is not necessary (the model would work just as well without this test).
But we add it here for instruction purposes.

13. We specify +retrieval> in actions. While =retrieval> would modify a chunk present
in the buffer, + states that a new chunk should be created/set. In case of the retrieval
buffer chunks are ‘created’ by being retrieved from their module of declarative memory
(in our case, dm).

We will look at some more examples of querying in the next section (i.e., cases in which
we use ? instread of = in front of the name of a buffer). Before that, we add the third rule
discussed above, which should check that the verb in goal carries a number, and if so, it
should consider the task done.

[py15] >>> agreement.productionstring(name="retrieve", string=""" 1

... =g> 2

... isa verbagreement 3

... task agree 4

... category 'verb' 5

... ?retrieval> 6

... buffer empty 7

... ==> 8

... =g> 9

... isa verbagreement 10

... task trigger_agreement 11

... category 'verb' 12

... +retrieval> 13

... isa word 14

... category 'noun' 15

... syncat 'subject' 16

... """) 17

8. \textasciitilde{}g\textgreater{} is an action we did not see before. It discards the
chunk present in the goal buffer.

2.8 More examples on queries

So far, we mentioned only one way of querying - checking that a buffer is full. Here are some
more cases:

[py16] >>> '?g> buffer full' 1

'?g> buffer full' 2

2.9. RUNNING A MODEL 19

>>> '?retrieval> state busy' 3

'?retrieval> state busy' 4

>>> '?retrieval> state error' 5

'?retrieval> state error' 6

• This checks whether a buffer is full (whether it carries a chunk).

• This is true if the retrieval buffer is working on retrieving a chunk.

• This is true if the last retrieval failed (no chunk has been found).

2.9 Running a model

We have almost everything ready to run our first model, we are just missing one piece:
having a chunk in the goal buffer in the start of our simulation (without that, there is no goal
and without a goal, the model has no reason to change its internal state). So let’s add the
goal:

[py17] >>> actr.chunktype("verbagreement", "task, category") 1

>>> g.add(actr.chunkstring(string="isa verbagreement task agree category 'verb'"))2

>>> g 3

{verbagreement(category=verb, task=agree)} 4

• The chunk is added to the goal buffer in the same way as to other modules and buffers
– by the attribute add.

We can now run the model.

[py18] >>> simulation = agreement.simulation() 1

>>> simulation.run() 2

(0, 'PROCEDURAL', 'CONFLICT RESOLUTION') 3

(0, 'PROCEDURAL', 'RULE SELECTED: retrieve') 4

(0.05, 'PROCEDURAL', 'RULE FIRED: retrieve') 5

(0.05, 'g', 'MODIFIED') 6

(0.05, 'retrieval', 'START RETRIEVAL') 7

(0.05, 'PROCEDURAL', 'CONFLICT RESOLUTION') 8

(0.05, 'PROCEDURAL', 'NO RULE FOUND') 9

(0.1, 'retrieval', 'CLEARED') 10

(0.1, 'retrieval', 'RETRIEVED: word(category=noun, meaning=[[car]], number=sg, phonology=/ka:/, syncat=subject)')11

(0.1, 'PROCEDURAL', 'CONFLICT RESOLUTION') 12

(0.1, 'PROCEDURAL', 'RULE SELECTED: agree') 13

(0.15, 'PROCEDURAL', 'RULE FIRED: agree') 14

(0.15, 'g', 'MODIFIED') 15

(0.15, 'PROCEDURAL', 'CONFLICT RESOLUTION') 16

(0.15, 'PROCEDURAL', 'NO RULE FOUND') 17

• First, we have to instantiate the simulation of the model.

• The simulation is run.

20 CHAPTER 2. BASICS OF ACT-R

What you see in the output is the trace of a model. Each line specifies three elements: the
first element is time (in seconds), the second element is the module that is affected, the third
element is a description of what’s happening to the module.

The first line states that conflict resolution takes place in the module procedural (i.e., the
module responsible for controlling production rules). This happens at time 0. There is one
rule that matches the current state of affairs, and that is retrieve (retrieve requires that
the goal buffer has a chunk with the category verb and an empty and free retrieval buffer).
It can fire (i.e., its left-hand side is satisfied by the state of the model at 0 ms, so we can
proceed to the right-hand side of the production rule). In ACT-R, firing takes 50 ms, as we
see above in the time specification of the third line. After that, goal is (vacuously) modified
(the modification is vacuous given our rules above). Then the retrieval starts, and it takes 50
ms to finish the retrieval. When the retrieval happens (line 9), the retrieval buffer carries the
right chunk. Followingly, a new rule can be selected, agree (agree requires that the retrieval
carries a subject chunk, and consequently, it modifies the chunk in goal to match the number
between a verb and a boun.

After that, the last rule fires (done), which cleares the goal buffer. When the goal buffer is
cleared, its information does not disappear. It is assumed in ACT-R that that information is
transferred to the declarative memory. This is also the case here (our past goals become our
newly acquired memory facts).

We can now check the final state of the declarative memory to see that this is the case:

[py19] >>> dm 1

{word(category=noun, meaning=[[car]], number=sg, phonology=/ka:/, syncat=subject): {0.0}}2

2.10 Example 2 – a top-down parser

We will now turn to a more realistic case, a parser. There will be more parsers considered
throughout the tutorials. Our starting point is one of the simplest parsers – a top-down
parser.2

Suppose we have a context-free grammar with the following rules:
S → NP VP
NP → ProperN
VP → V NP

Furthermore, there are two nouns and one verb in our language: Mary, Bill, likes. We
will analyze one sentence with our parser, Mary likes Bill.

A top-down parser can be understood as a push-down automaton. Push-down automata
have a memory, represented as a stack. In the parser, the stack represents categories that have
to be parsed. For example, the stack may consist of one symbol, S - this would express that
a sentence needs to be parsed (obviously, this is the starting point of a parser). Or the stack
could consist of two elements: NP, VP – expressing that the parser needs to parse an NP,
followed by parsing a VP.

2The full code for this model is also available as u1_topdownparser on:
http://www.jakubdotlacil.com/tutorials

2.10. EXAMPLE 2 – A TOP-DOWN PARSER 21

The parser proceeds by modifying the contents of its stack based on two pieces of in-
formation: the top element on its stack (also written as the leftmost element below) and,
possibly, a word that has to be parsed (the leftmost word in the stream of words).

We can sum up the parsing rules into just two general algorithm schemata (see, for ex-
ample, Hale 2014):

• expand: if the stack shows a symbol X on top, and the grammar contains a rule X -> A
B or X -> A, replace the symbol X with the symbol A, B or the symbol A, respectively.

• scan: if the stack shows a terminal and w, the word to be parsed, is of the right category,
then remove the terminal from the stack and w from the parsed sentence.

We will now implement these general parsing rules to our grammar, which will be able
to parse the sentence Mary likes Bill.

2.10.1 First steps in the model

Let us start with the first standard step, importing pyactr.

[py20] >>> import pyactr as actr 1

Now, we should specify what chunktypes we need. We will have one chunktype for the
parser. This will keep the information about stack contents, what word was parsed but also
what the current task of the parser is (for most parts, it will be just that, parsing).

[py21] >>> actr.chunktype("parsing", "task stack_top stack_bottom parsed_word ") 1

• The chunk type has four slots: what task we are doing, what the current top element
in the stack is, what the bottom element is and what the parsed word is. Note that we
have only two positions in our chunktype, stack top and stack bottom. This suffices for
the simple case of binary structures we consider here, so we will leave it at this.

The second chunktype will represent the sentence. This might look weird: why should we
represent a sentence in a chunk? In most of the cases, the sentence is external to an agent,
it’s what the agent reads or hears. However, at this point we have no way to represent the
surrounding environment, so we have to represent a sentence internally, as a chunk. Later
on, we will see a more elegant solution. The chunktype sentence will be assumed to carry at
most three words.

[py22] >>> actr.chunktype("sentence", "word1 word2 word3") 1

We will now initialize the model and assume it has a declarative memory, retrieval and a
goal buffer.

[py23] >>> parser = actr.ACTRModel() 1

>>> dm = parser.DecMem() 2

>>> retrieval = parser.dmBuffer(name="retrieval", declarative_memory=dm) 3

>>> g = parser.goal(name="g") 4

22 CHAPTER 2. BASICS OF ACT-R

• We call our model parser.

• The declarative memory is declared in the standard way, using the attribute DecMem.

• The retrieval is declared in the standard way. We tie it to the just created declarative
memory.

• g is our goal buffer.

The goal buffer will carry the information about parsing (that is, it will have the chunk
parsing, whose type was already created). But we also need to carry the information about
the parsed sentence (the chunk sentence). It would be nice to leave that information to the
environment but we cannot do it yet, so let’s create a second buffer, which is identical to
goal and which carries the information about a sentence. In fact, that is not such a strange
solution. ACT-R commonly assumes two goal buffers, one, which we used so far and which
keeps information about one’s goals, another one which keeps the internal image of current
information. It might not be so far-fetched to use the imaginal buffer for the sentence itself.
We will start this new buffer.

[py24] >>> g2 = parser.goal(name="g2", set_delay=0.2) 1

• The imaginal buffer, g2, is created in almost the same way as the goal buffer. How-
ever, one extra argument is specified: set_delay. This parameter specifies the delay
required to set a chunk in the buffer. That is, it would take 0.2 s to set a chunk in g2.
This is the standard value for the imaginal buffer (the goal buffer requires only 0.05 s
to set a chunk).

We can now add chunks into g and g2.

[py25] >>> g.add(actr.chunkstring(string="isa parsing task parse stack_top 'S'")) 1

>>> g2.add(actr.chunkstring(string="isa sentence word1 'Mary' word2 'likes' word3 'Bill'"))2

• We assume that the parser’s goal is to parse a sentence.

• The sentence to be parses is Mary likes Bill.

The toughest part is coming now: how to code the parsing itself?
We will assume that grammar (and parsing rules stemming from grammar) is part of pro-

duction knowledge. This is in contrast to lexical information, which is commonly treated as
part of declarative memory (see Lewis and Vasishth 2005, for arguments for this distinction).
So, our first task is to specify lexical knowledge. Let’s do that (only syntactic categories will
be specified):

[py26] >>> actr.chunktype("word", "form, cat") 1

>>> dm.add(actr.chunkstring(string="isa word form 'Mary' cat 'ProperN'")) 2

>>> dm.add(actr.chunkstring(string="isa word form 'Bill' cat 'ProperN'")) 3

>>> dm.add(actr.chunkstring(string="isa word form 'likes' cat 'V'")) 4

• We start by creating a new type that will accommodate lexical information.

2.–4. We have three words. Their values should be obvious.

We now have to specify production rules that mimic context-free grammar rules and that
encode top-down parsing, represented in the schemata expand and scan.

2.10. EXAMPLE 2 � A TOP-DOWN PARSER 23

2.10.2 Production rules

Let’s start with the first rule, expanding S into NP and VP. This should be relatively straight-
forward. We specify it as:

[py27] >>> parser.productionstring(name="expand: S->NP VP", string=""" 1

... =g> 2

... isa parsing 3

... task parse 4

... stack_top 'S' 5

... ==> 6

... =g> 7

... isa parsing 8

... stack_top 'NP' 9

... stack_bottom 'VP' 10

... """) 11

2. The rule tests against the goal buffer.

3.–5. It requires that the goal buffer carries a chunk whose task is to parse and whose element
on top is S.

7. Its action is to modify the goal buffer.

8.–10. The rule will set the top element as NP and the bottom as VP. That is, this is the rule
that expands S into NP and VP according to the abstract schema discussed above (see
the general algorithm schema expand).

Notice that this oversimplifies things slightly. If we now have a symbol following S in the
stack, it would be overwritten by VP - hardly a behavior we would want to have. This over-
simplification is to a large extent caused by the fact that we only work with two-element
stack. It will not affect our example or several other examples, so we will leave this simplifi-
cation in place.

The second rule states that NP is expanded into ProperN:

[py28] >>> parser.productionstring(name="expand: NP->ProperN", string=""" 1

... =g> 2

... isa parsing 3

... task parse 4

... stack_top 'NP' 5

... ==> 6

... =g> 7

... isa parsing 8

... stack_top 'ProperN' 9

... """) 10

9. The rule says that the symbol on the top of the stack should be rewritten from NP to N.
Notice that unlike the previous rule, nothing is done to the bottom of the stack. Thus,
it will be left unmodified.

The third rule in our grammar describes the expansion of VP into V and NP. So let’s deal
with it in the parallel way as the previous rules:

24 CHAPTER 2. BASICS OF ACT-R

[py29] >>> parser.productionstring(name="expand: VP -> V NP", string=""" 1

... =g> 2

... isa parsing 3

... task parse 4

... stack_top 'VP' 5

... ==> 6

... =g> 7

... isa parsing 8

... stack_top 'V' 9

... stack_bottom 'NP' 10

... """) 11

1.–10. Notice that the rule is almost identical to the first rule. We only changed the symbols,
according to the context-free grammar rules.

Now, for the most complext part. Once we have terminals (ProperN, V), we have to check
that the terminal matches the category of the word to be parsed. If so, the word is scanned.

We achieve this by splitting the task into two rules. If we have a terminal, say ProperN,
the category of the word has to be retrieved from memory (rule retrieve). If the category
matches the top of stack, the word is scanned.

[py30] >>> parser.productionstring(name="retrieve: ProperN", string=""" 1

... =g> 2

... isa parsing 3

... task parse 4

... stack_top 'ProperN' 5

... =g2> 6

... isa sentence 7

... word1 =w1 8

... ==> 9

... =g> 10

... isa parsing 11

... task retrieving 12

... +retrieval> 13

... isa word 14

... form =w1 15

... """) 16

2.–5. We test that the top of the stack has a terminal, ProperN.

6.–8. The imaginal buffer has the leftmost word; the word is assigned to the variable w1.

10.-12. The goal is switched from parsing to retrieving.

13.–15. The retrieval starts. We are retrieving the chunk with the form of w1. This will retrieve
a chunk with the lexical information about the particular word.

[py31] >>> parser.productionstring(name="retrieve: V", string=""" 1

... =g> 2

... isa parsing 3

... task parse 4

2.10. EXAMPLE 2 – A TOP-DOWN PARSER 25

... stack_top 'V' 5

... =g2> 6

... isa sentence 7

... word1 =w1 8

... ==> 9

... =g> 10

... isa parsing 11

... task retrieving 12

... +retrieval> 13

... isa word 14

... form =w1 15

... """) 16

5. We test that the top of the stack has a terminal, V. APart from this one line, the rule is
identical to the previous one.

Now, we define the rule that deals with the retrieved information and scans the upcoming
word:

[py32] >>> parser.productionstring(name="scan: string", string=""" 1

... =g> 2

... isa parsing 3

... task retrieving 4

... stack_top =y 5

... stack_bottom =x 6

... =retrieval> 7

... isa word 8

... form =w1 9

... cat =y 10

... =g2> 11

... isa sentence 12

... word1 =w1 13

... word2 =w2 14

... word3 =w3 15

... ==> 16

... =g> 17

... isa parsing 18

... task print 19

... stack_top =x 20

... stack_bottom empty 21

... parsed_word =w1 22

... =g2> 23

... isa sentence 24

... word1 =w2 25

... word2 =w3 26

... word3 empty 27

... """) 28

2.–6. This checks that the goal buffer has the task retrieving. Furthermore, it assigns stack
symbols to two variables.

7.–10. The syntactic category of the retrieval must match the symbol on top of the stack.

26 CHAPTER 2. BASICS OF ACT-R

11.–15. The imaginal buffer carries the sentence. Three words are assigned to three variables.

17.–22. This action achieves that the symbol on the bottom of the stack is moved to the top
position. Notice also that the goal buffer has been changed into a new stage, print.
This is not necessary, it serves only the purpose of checking that everything went fine.
We want to print the word that has been currently parsed. We will do that in a separate
production. For the same reason, we keep the information about the currently parsed
word in the goal buffer, in the slot parsed_word.

23.–27. Words are moved one level up (the word on the second position is moved to the first
position etc.). The last position is left empty.

The printing production that follows scanning the string, is specified below:

[py33] >>> parser.productionstring(name="print parsed word", string=""" 1

... =g> 2

... isa parsing 3

... task print 4

... =g2> 5

... isa sentence 6

... word1 ~empty 7

... ==> 8

... !g> 9

... show parsed_word 10

... =g> 11

... isa parsing 12

... task parse 13

... parsed_word None""") 14

2.–4. This tests that the goal buffer has the task print.

5.–7. The value of the slot word1 in the imaginal buffer is not empty (the squiggle is negation).

9.–10. -

11.–12. This part will print the parsed word. !g> says that Python should carry out an action in
the goal buffer. After !g>, we have to specify what Python should do: we specify that
we want Python to show something (i.e., it should execute the method show) and what
should be shown, that is, the value of the slot parsed_word.

13.–16. The last action deletes whatever was in parsed_word.

The last production we have to consider is the production at the end of parsing. The parsing
ends when word1 has the value empty and the task is print (i.e., no parsing or retrieving is
going on in the goal buffer). As a way of summary, we will also print all our rules.

[py34] >>> productions = parser.productionstring(name="done", string=""" 1

... =g> 2

... isa parsing 3

... task print 4

... =g2> 5

2.10. EXAMPLE 2 � A TOP-DOWN PARSER 27

... isa sentence 6

... word1 empty 7

... ==> 8

... =g> 9

... isa parsing 10

... task done 11

... !g> 12

... show parsed_word 13

... ~g2> 14

... ~g>""") 15

>>> print(productions) 16

None 17

1. We bind the output to the variable productions. The output is all the production rules
in the model. We can print them afterwards.

6.–8. We check that there is no leftmost word (the whole sentence was parsed).

14.–15. The imaginal and goal buffers are cleared.

16. We print all production rules.

2.10.3 Running the model

We run the model in the same way as before.

[py35] >>> sim = parser.simulation() 1

>>> sim.run() 2

(0, 'PROCEDURAL', 'CONFLICT RESOLUTION') 3

(0, 'PROCEDURAL', 'RULE SELECTED: expand: S->NP VP') 4

(0.05, 'PROCEDURAL', 'RULE FIRED: expand: S->NP VP') 5

(0.05, 'g', 'MODIFIED') 6

(0.05, 'PROCEDURAL', 'CONFLICT RESOLUTION') 7

(0.05, 'PROCEDURAL', 'RULE SELECTED: expand: NP->ProperN') 8

(0.1, 'PROCEDURAL', 'RULE FIRED: expand: NP->ProperN') 9

(0.1, 'g', 'MODIFIED') 10

(0.1, 'PROCEDURAL', 'CONFLICT RESOLUTION') 11

(0.1, 'PROCEDURAL', 'RULE SELECTED: retrieve: ProperN') 12

(0.15, 'PROCEDURAL', 'RULE FIRED: retrieve: ProperN') 13

(0.15, 'g', 'MODIFIED') 14

(0.15, 'retrieval', 'START RETRIEVAL') 15

(0.15, 'PROCEDURAL', 'CONFLICT RESOLUTION') 16

(0.15, 'PROCEDURAL', 'NO RULE FOUND') 17

(0.2, 'retrieval', 'CLEARED') 18

(0.2, 'retrieval', 'RETRIEVED: word(cat=ProperN, form=Mary)') 19

(0.2, 'PROCEDURAL', 'CONFLICT RESOLUTION') 20

(0.2, 'PROCEDURAL', 'RULE SELECTED: scan: string') 21

(0.25, 'PROCEDURAL', 'RULE FIRED: scan: string') 22

(0.25, 'g2', 'MODIFIED') 23

(0.25, 'g', 'MODIFIED') 24

(0.25, 'PROCEDURAL', 'CONFLICT RESOLUTION') 25

(0.25, 'PROCEDURAL', 'RULE SELECTED: print parsed word') 26

28 CHAPTER 2. BASICS OF ACT-R

(0.3, 'PROCEDURAL', 'RULE FIRED: print parsed word') 27

Mary 28

(0.3, 'g', 'EXECUTED') 29

(0.3, 'g', 'MODIFIED') 30

(0.3, 'PROCEDURAL', 'CONFLICT RESOLUTION') 31

(0.3, 'PROCEDURAL', 'RULE SELECTED: expand: VP -> V NP') 32

(0.35, 'PROCEDURAL', 'RULE FIRED: expand: VP -> V NP') 33

(0.35, 'g', 'MODIFIED') 34

(0.35, 'PROCEDURAL', 'CONFLICT RESOLUTION') 35

(0.35, 'PROCEDURAL', 'RULE SELECTED: retrieve: V') 36

(0.4, 'PROCEDURAL', 'RULE FIRED: retrieve: V') 37

(0.4, 'g', 'MODIFIED') 38

(0.4, 'retrieval', 'START RETRIEVAL') 39

(0.4, 'PROCEDURAL', 'CONFLICT RESOLUTION') 40

(0.4, 'PROCEDURAL', 'NO RULE FOUND') 41

(0.45, 'retrieval', 'CLEARED') 42

(0.45, 'retrieval', 'RETRIEVED: word(cat=V, form=likes)') 43

(0.45, 'PROCEDURAL', 'CONFLICT RESOLUTION') 44

(0.45, 'PROCEDURAL', 'RULE SELECTED: scan: string') 45

(0.5, 'PROCEDURAL', 'RULE FIRED: scan: string') 46

(0.5, 'g2', 'MODIFIED') 47

(0.5, 'g', 'MODIFIED') 48

(0.5, 'PROCEDURAL', 'CONFLICT RESOLUTION') 49

(0.5, 'PROCEDURAL', 'RULE SELECTED: print parsed word') 50

(0.55, 'PROCEDURAL', 'RULE FIRED: print parsed word') 51

likes 52

(0.55, 'g', 'EXECUTED') 53

(0.55, 'g', 'MODIFIED') 54

(0.55, 'PROCEDURAL', 'CONFLICT RESOLUTION') 55

(0.55, 'PROCEDURAL', 'RULE SELECTED: expand: NP->ProperN') 56

(0.6, 'PROCEDURAL', 'RULE FIRED: expand: NP->ProperN') 57

(0.6, 'g', 'MODIFIED') 58

(0.6, 'PROCEDURAL', 'CONFLICT RESOLUTION') 59

(0.6, 'PROCEDURAL', 'RULE SELECTED: retrieve: ProperN') 60

(0.65, 'PROCEDURAL', 'RULE FIRED: retrieve: ProperN') 61

(0.65, 'g', 'MODIFIED') 62

(0.65, 'retrieval', 'START RETRIEVAL') 63

(0.65, 'PROCEDURAL', 'CONFLICT RESOLUTION') 64

(0.65, 'PROCEDURAL', 'NO RULE FOUND') 65

(0.7, 'retrieval', 'CLEARED') 66

(0.7, 'retrieval', 'RETRIEVED: word(cat=ProperN, form=Bill)') 67

(0.7, 'PROCEDURAL', 'CONFLICT RESOLUTION') 68

(0.7, 'PROCEDURAL', 'RULE SELECTED: scan: string') 69

(0.75, 'PROCEDURAL', 'RULE FIRED: scan: string') 70

(0.75, 'g2', 'MODIFIED') 71

(0.75, 'g', 'MODIFIED') 72

(0.75, 'PROCEDURAL', 'CONFLICT RESOLUTION') 73

(0.75, 'PROCEDURAL', 'RULE SELECTED: done') 74

(0.8, 'PROCEDURAL', 'RULE FIRED: done') 75

Bill 76

(0.8, 'g', 'EXECUTED') 77

(0.8, 'g', 'MODIFIED') 78

2.10. EXAMPLE 2 � A TOP-DOWN PARSER 29

(0.8, 'g2', 'CLEARED') 79

(0.8, 'g', 'CLEARED') 80

(0.8, 'PROCEDURAL', 'CONFLICT RESOLUTION') 81

(0.8, 'PROCEDURAL', 'NO RULE FOUND') 82

• We instantiate the simulation of the model.

• The simulation is run.

This all looks good. We parsed the three words and we ended up in the stage done. We
can also check our declarative memory. Since we cleared g and g2 at the end of done, it
should consist of those elements (it should also carry the chunks we put in there before, the
lexical knowledge). The chunks from g and g2 should have empty positions in stack_top

and stack_bottom, as well as word1 – word3. Let’s see.

[py36] >>> dm 1

{word(cat=ProperN, form=Bill): {0.0}, word(cat=V, form=likes): {0.0, 0.7}, word(cat=ProperN, form=Mary): {0.0, 0.45}, parsing(parsed_word=Bill, stack_bottom=empty, stack_top=empty, task=done): {0.8}, sentence(word1=empty, word2=empty, word3=empty): {0.8}}2

This is all good.
As a further check, let’s see whether our simple parser correctly fails if we feed it an

ungrammatical sentence, say Bill Mary likes. It should fail during parsing of the second word,
Mary, because the noun would not match its expectations.

We add relevant chunks into the goal and the imaginal buffers and start the new simula-
tion.

[py37] >>> g.add(actr.chunkstring(string="isa parsing task parse stack_top 'S'")) 1

>>> g2.add(actr.chunkstring(string="isa sentence word1 'Bill' word2 'Mary' word3 'likes'"))2

>>> sim = parser.simulation() 3

>>> sim.run() 4

(0, 'PROCEDURAL', 'CONFLICT RESOLUTION') 5

(0, 'PROCEDURAL', 'RULE SELECTED: expand: S->NP VP') 6

(0.05, 'PROCEDURAL', 'RULE FIRED: expand: S->NP VP') 7

(0.05, 'g', 'MODIFIED') 8

(0.05, 'PROCEDURAL', 'CONFLICT RESOLUTION') 9

(0.05, 'PROCEDURAL', 'RULE SELECTED: expand: NP->ProperN') 10

(0.1, 'PROCEDURAL', 'RULE FIRED: expand: NP->ProperN') 11

(0.1, 'g', 'MODIFIED') 12

(0.1, 'PROCEDURAL', 'CONFLICT RESOLUTION') 13

(0.1, 'PROCEDURAL', 'RULE SELECTED: retrieve: ProperN') 14

(0.15, 'PROCEDURAL', 'RULE FIRED: retrieve: ProperN') 15

(0.15, 'g', 'MODIFIED') 16

(0.15, 'retrieval', 'START RETRIEVAL') 17

(0.15, 'PROCEDURAL', 'CONFLICT RESOLUTION') 18

(0.15, 'PROCEDURAL', 'RULE SELECTED: scan: string') 19

(0.2, 'retrieval', 'CLEARED') 20

(0.2, 'PROCEDURAL', 'RULE FIRED: scan: string') 21

(0.2, 'retrieval', 'RETRIEVED: word(cat=ProperN, form=Bill)') 22

(0.2, 'g2', 'MODIFIED') 23

(0.2, 'g', 'MODIFIED') 24

(0.2, 'PROCEDURAL', 'CONFLICT RESOLUTION') 25

30 CHAPTER 2. BASICS OF ACT-R

(0.2, 'PROCEDURAL', 'RULE SELECTED: print parsed word') 26

(0.25, 'PROCEDURAL', 'RULE FIRED: print parsed word') 27

Bill 28

(0.25, 'g', 'EXECUTED') 29

(0.25, 'g', 'MODIFIED') 30

(0.25, 'PROCEDURAL', 'CONFLICT RESOLUTION') 31

(0.25, 'PROCEDURAL', 'RULE SELECTED: expand: VP -> V NP') 32

(0.3, 'PROCEDURAL', 'RULE FIRED: expand: VP -> V NP') 33

(0.3, 'g', 'MODIFIED') 34

(0.3, 'PROCEDURAL', 'CONFLICT RESOLUTION') 35

(0.3, 'PROCEDURAL', 'RULE SELECTED: retrieve: V') 36

(0.35, 'PROCEDURAL', 'RULE FIRED: retrieve: V') 37

(0.35, 'g', 'MODIFIED') 38

(0.35, 'retrieval', 'START RETRIEVAL') 39

(0.35, 'PROCEDURAL', 'CONFLICT RESOLUTION') 40

(0.35, 'PROCEDURAL', 'NO RULE FOUND') 41

(0.4, 'retrieval', 'CLEARED') 42

(0.4, 'retrieval', 'RETRIEVED: word(cat=ProperN, form=Mary)') 43

(0.4, 'PROCEDURAL', 'CONFLICT RESOLUTION') 44

(0.4, 'PROCEDURAL', 'NO RULE FOUND') 45

• The goal should be to parse a sentence, as before.

• The imaginal buffer should carry the information about the sentence, Bill Mary likes.

This is good. The parser correctly parsed the first word, but it failed at the second word.
After it was retrieved, the parser could not match its category to the top of the stack (which
required V).

But it is not enough that the parser correctly parses grammatical sentences and fails in
ungrammatical ones. ACT-R is not a theory of computationally effective parsers, it is a theory
of human cognition. ACT-R parsers should then model human processing as realistically as
possible. Is that so in this case? One thing we would expect from such a parser is that its
time requirements should correspond to human processing. We see that it takes 800 ms to
parse the sentence Mary likes Bill. This might be roughly correct, but there are things to
worry about. For example, the parser requires this much time while abstracting away from
what people have to do during parsing (internalizing visual information, projecting sentence
meaning, a.o.), so ultimately, 800 ms might be too much given the amount of work this parser
does. Another worry is that retrieving lexical information always takes 50 ms (see above).
But this is hardly realistic. We know that lexical retrieval is dependent on various factors,
and frequency is probably the most relevant one. This is completely ignored here. Finally,
top-down parsers works quite well for a right-branching structures like the sentence Mary
likes Bill, but it would have problems with left branching. In left branching the parser would
have to store as many symbols on the stack as there are levels of embedding. Since every
expansion of a rule takes 50 ms, we would expect that left branching structures of n-level
embeddings should take 50 ∗ n ms. This is at odds with human perforamce (cf. Resnik 1992).
Thus, there is a lot of room for improvement to get to a more plausible human parser.

2.10. EXAMPLE 2 � A TOP-DOWN PARSER 31

2.10.4 Stepping through a model

So far, when we checked a model, we always did that in one step, by running it from start
to the end. This is fine, but there are cases when we might want to proceed more carefully.
For example, we might want to check each step to see at which point the goal buffer gets its
parsed_word. Or our model is running an infinite loop, and we only want to check what’s
going on in the first few rules. Or we want to check what our declarative memory looks like
after the retrieval is cleared for the first time. Etc.

For all these cases, it is handy to step through the simulation, rather than running it as a
whole. Let’s start our model again and do that.

[py38] >>> g = parser.goal(name="g") 1

>>> g2 = parser.goal(name="g2", set_delay=0.2) 2

>>> g.add(actr.chunkstring(string="isa parsing task parse stack_top 'S'")) 3

>>> g2.add(actr.chunkstring(string="isa sentence word1 'Bill' word2 'likes' word3 'Mary'"))4

>>> sim = parser.simulation() 5

>>> sim.step() 6

(0, 'PROCEDURAL', 'CONFLICT RESOLUTION') 7

Ok, what’s that? Nothing happened so far. The simulation only proceeded through the first
step (setting up the model), and there is no output. Let’s add some more steps:

[py39] >>> for _ in range(10): 1

... sim.step() 2

... 3

(0, 'PROCEDURAL', 'RULE SELECTED: expand: S->NP VP') 4

(0.05, 'PROCEDURAL', 'RULE FIRED: expand: S->NP VP') 5

(0.05, 'g', 'MODIFIED') 6

(0.05, 'PROCEDURAL', 'CONFLICT RESOLUTION') 7

(0.05, 'PROCEDURAL', 'RULE SELECTED: expand: NP->ProperN') 8

(0.1, 'PROCEDURAL', 'RULE FIRED: expand: NP->ProperN') 9

(0.1, 'g', 'MODIFIED') 10

(0.1, 'PROCEDURAL', 'CONFLICT RESOLUTION') 11

(0.1, 'PROCEDURAL', 'RULE SELECTED: retrieve: ProperN') 12

(0.15, 'PROCEDURAL', 'RULE FIRED: retrieve: ProperN') 13

1 We add more steps using the for-loop. This line says that the loop will run 10 times.

2 Every time, the simulation steps forward by one step.

Let’s now move to the point at which the rule ‘scan: string’ has just fired.
In order to be able to do that, we have to be able to see into the current event. The current

event is an attribute of the simulation. This is how we can check it:

[py40] >>> sim.current_event 1

Event(time=0.15, proc='PROCEDURAL', action='RULE FIRED: retrieve: ProperN') 2

The event has three arguments: time, proc and action. Time is the time at which the event
took place. proc is the name of the module that’s affected. action represents the action that’s
taking place. So, let’s move to the action of firing of ‘scan: string’.

32 CHAPTER 2. BASICS OF ACT-R

[py41] >>> while sim.current_event.action != 'RULE FIRED: scan: string': 1

... sim.step() 2

... 3

(0.15, 'g', 'MODIFIED') 4

(0.15, 'retrieval', 'START RETRIEVAL') 5

(0.15, 'PROCEDURAL', 'CONFLICT RESOLUTION') 6

(0.15, 'PROCEDURAL', 'NO RULE FOUND') 7

(0.2, 'retrieval', 'CLEARED') 8

(0.2, 'retrieval', 'RETRIEVED: word(cat=ProperN, form=Bill)') 9

(0.2, 'PROCEDURAL', 'CONFLICT RESOLUTION') 10

(0.2, 'PROCEDURAL', 'RULE SELECTED: scan: string') 11

(0.25, 'PROCEDURAL', 'RULE FIRED: scan: string') 12

1 We specify a loop that will run until the action is ‘scan: string’.

2 The simulation proceeds forward while the loop is True.

Now, we can check, for example, what our buffers look like:

[py42] >>> g 1

{parsing(parsed_word=None, stack_bottom=VP, stack_top=ProperN, task=retrieving)} 2

>>> g2 3

{sentence(word1=likes, word2=Mary, word3=empty)} 4

2.10.5 Exercises

As an exercise, consider expanding the top-down parser. Additionally to what we have now,
we should also be able to process the following rules from our grammar:
VP → V CP
VP → V
CP → C S

Furthermore, we will add following lexical items into our memory: that, cat C; believes,
cat V; sleeps, cat V; John, cat ProperN.

With these additions, you should be able to parse sentences like ‘Mary believes that Bill
sleeps’ (but see below).

You can probably see right away that the created parser might run into problems. For
example, the parser might get stuck if you feed it the sentence ‘Mary believes that Bill likes
Mary’ and it decides to expand the first VP into V and NP or into just V. This is a typical
property of top-down parsers: they hypothesize about categories/structures before seeing
them. In our model, the parser will have several ways to expand VP, so it should run into
troubles when it uses the rule that happens to be incompatible with input.

So, what happens in those cases? What will our ACT-R top down parser do? What do
you think?

The problem with top-down parsing can be avoided if we switch our strategy: rather
than postulating the structure before having evidence, we might want to defer creating the
structure until all the relevant evidence is available. This different strategy has a name - it
is a bottom-up parser. We will consider how it can be built in ACT-R in the next chapter, as
well as some other models relevant for language.

2.11. THE ENVIRONMENT IN ACT-R 33

2.11 The environment in ACT-R

2.11.1 Introduction

We introduced a few modules of ACT-R in the previous sections:

• the declarative memory module and its retrieval buffer

• the goal buffer

• the imaginal buffer

• procedural knowledge

These are core modules of ACT-R. But using just those modules yields a model that is
completely internal. It does not interact in any way with the environment. We are going to
change that in this section.

2.11.2 A simple lexical decision task

We will consider a very simple lexical decision task, one in which the ACT-R model searches
a (virtual) screen, finds a word, and if the word matches its (extremely impoverished) lexi-
con, it will press the J key, otherwise it will press the F key.

We start by import pyactr.

[py1] >>> import pyactr as actr 1

Creating an environment

ACT-R models can interact with an environment, which, currently, is just a (simulated) com-
puter screen, and a very primitive one at that (currently, only plain text is supported). We
start it as follows:

[py43] >>> environment = actr.Environment(focus_position=(0,0)) 1

The class Environment has various arguments when initialized. Here we only specified
focus_position (this indicates at which position the eye focus is when the simulation starts).
Two other most relevant arguments are simulated_screen_size and viewing_distance.
The first argument specifies the size of the screen we are trying to simulate in our model.
If you are running a simulation of an experiment, you would encode the physical size of
the screen (in cm) of the monitor you used. The second important argument specifies the
distance from which the monitor is seen. Some reasonable defaults are assumed here: the
screen is of size 50x28 cm, the distance is 50cm.

After the environment is initialized, we can initialize our ACT-R model.

[py44] >>> model = actr.ACTRModel(environment=environment, automatic_visual_search=False)1

34 CHAPTER 2. BASICS OF ACT-R

The initialization is similar as previously, the only difference is that this time, we specify
arguments when creating the model. First of all, we state what environment the model is
interacting with. This is the environment we just created. Second, we specify a parameter
in the model. The parameter is automatic_visual_search and we set it to False. This will
ensure that ACT-R does not search the environment unless we specifically tell it to do so
(more on this later).

There are many other parameters in the model, and a big part of these tutorials is to
discuss their role in cognitive modelling. You can glance at all possible parameters available
by checking the attribute MODEL_PARAMETERS:

[py45] >>> model.MODEL_PARAMETERS 1

{'retrieval_threshold': 0, 'latency_factor': 0.1, 'eye_mvt_angle_parameter': 1, 'utility_alpha': 0.2, 'baselevel_learning': True, 'instantaneous_noise': 0, 'automatic_visual_search': True, 'activation_trace': False, 'buffer_spreading_activation': {}, 'emma_noise': True, 'utility_noise': 0, 'motor_prepared': False, 'partial_matching': False, 'utility_learning': False, 'strict_harvesting': False, 'strength_of_association': 0, 'eye_mvt_scaling_parameter': 0.01, 'subsymbolic': False, 'latency_exponent': 1.0, 'rule_firing': 0.05, 'decay': 0.5, 'emma': True}2

Adding standard modules

After this, we add modules that should be familiar from previous parts. Since we are simu-
lating a primitive lexical decision task, we will need some words in the declarative memory
that ACT-R can access and check against the stimuli in the simulated experiment. So, we add
a few words into the declarative memory.

[py46] >>> actr.chunktype("goal", "state") 1

>>> actr.chunktype("word", "form") 2

>>> dm = model.DecMem() 3

>>> for i in {"elephant", "dog", "crocodile"}: 4

... dm.add(actr.makechunk(typename="word", form=i)) 5

... 6

>>> retrieval = model.dmBuffer("retrieval", dm) 7

>>> g = model.goal("g") 8

4 – 6 Notice that we add three words into our declarative memory using a for loop, rather
than tediously writing the code for each word. This way of adding chunks can save a
lot of time if you want to add a lot of elements (e.g., the whole lexicon).

Finally, we add a chunk into the goal buffer that will be present there when our simula-
tion starts.

[py47] >>> g.add(actr.makechunk(nameofchunk='start', typename="goal", state='start')) 1

Visual module

The visual module will allow the ACT-R model to ‘see’ the environment. This is achieved
through the interaction of two buffers: visual_location searches the environment for ele-
ments matching its search criterie; visual stores the element that was found using visual_location.
The two buffers are sometimes called the visual Where and What buffers.

The visual Where buffer checks the environment (the screen) and outputs the location of
an element on the screen that matches search criteria. Three slots are possible for a search:
color, screen_x (the horizontal position on the screen) and screen_y (the vertical position
on the screen). The x and y positions can be specified in precise terms (e.g., find an element in

2.11. THE ENVIRONMENT IN ACT-R 35

the location screen_x 100 screen_y 100 where numbers represent pixels) or only roughly.
Stating screen_x <100 would search the part of the screen that has 100 or fewer pixels on the
x-axis and screen_x >100 would search the other part of the screen. Three other keywords
are supported in search. screen_x lowest expresses that the element with the lowest posi-
tion on the horizontal axis should be found. screen_x highest searches for the element with
the highest position on the same axis. screen_x closest searches for the closest element (the
axis is ignored in this case). The same keywords and search terms can be used for the y axis.

The visual What buffer stuffs the element whose location was found in the Where buffer.
Thus, usually, this buffer follows the workings of the previous buffer, as we’ll see in produc-
tion rules.

The vision module as a whole is an implementation of an EMMA (Eye Movements and
Movement of Attention) computational model (Salvucci, 2001), which, in turn, is a general-
ization (and simplification) of E-Z Reader model (Reichle et al., 1998). While the latter model
is used for reading, the EMMA model attempts to simulate any visual task, not just reading.
Empirical support and modelling claims for E-Z Reader and EMMA can be found in (Reichle
et al., 1998; Salvucci, 2001; Staub, 2011). Since these issues go beyond the scope of the book,
we will not discuss them here.

2.11.3 Motor module

The motor module models pressing a key on a keyboard (or typing, if more key strokes are
chained). The ACT-R typing model is based on EPIC’s Manual Motor Processor (Meyer and
Kieras, 1997). It has one buffer that accepts requests to execute motor commands. The ACT-R
model implemented in pyactr is more limited, it currently supports only one command can
be: that of press_key). But this should suffice for simulations of many experimental designs,
since it is common to allow only for keyboard interaction in experiments.

The hands of the model are assumed to be positioned on the standard keyboard at the
home row position (index fingers are at F and J). The model assumes a competent but not an
expert typist.

Adding productions

In the production, we want to model a lexical decision task. Five rules will suffice for this.
The first rule will ensure that the visual Where buffer looks for a word in the (virtual)

screen.

[py48] >>> model.productionstring(name="find_word", string=""" 1

... =g> 2

... isa goal 3

... state 'start' 4

... ?visual_location> 5

... buffer empty 6

... ==> 7

... =g> 8

... isa goal 9

... state 'attend' 10

... +visual_location> 11

36 CHAPTER 2. BASICS OF ACT-R

... isa _visuallocation 12

... screen_x closest""") 13

The rule requires that the start chunk is in the goal buffer (lines 2 – 4) and there is no
chunk in the visual location buffer (lines 5 – 6). If this is satisfied, the goal will be updated
(lines 8 – 10) and the visual location will be updated (lines 11 – 13). The visual location is
updated with the position of the closest element (line 13).

After this rule fired, the ACT-R model would know a position of an element but it would
not know what that element is. For that, the visual What buffer has to be employed. This is
done in the second rule, attend_probe.

[py49] >>> model.productionstring(name="attend_probe", string=""" 1

... =g> 2

... isa goal 3

... state 'attend' 4

... =visual_location> 5

... isa _visuallocation 6

... ?visual> 7

... state free 8

... ==> 9

... =g> 10

... isa goal 11

... state 'retrieving' 12

... +visual> 13

... isa _visual 14

... cmd move_attention 15

... screen_pos =visual_location 16

... ~visual_location>""") 17

This rule checks that there is an element in the visual Where buffer (lines 5 and 6). If so
and if the visual What buffer is free (i.e., it does not carry out any action, a new chunk is
added to it (lines 13 – 16). The last line states that the visual location is cleared.

Notice how the visual buffer finds an element. This is achieved by specifying the com-
mand in the chunk as move_attention. This requires that the attention is moved to a new
position. The new position is specified in the slot screen_pos, and it is the position that the
visual location has uncovered.

The interaction between the two buffers in vision simulates a two-step process: (i) notic-
ing an object (through the visual location buffer), (ii) finding what that object is, i.e., attending
to the object (through the visual buffer).

The next rule start the retrieval process. The retrieval process should be simple: match
the value in the chunk carried in the visual module to the retrieval module that will search
the declarative memory for the same element. In the rule that follows, the crucial bits are line
7 and line 14, which ensure that the value of the seen chunk forms the basis for the retrieval
of a word.

[py50] >>> model.productionstring(name="recalling", string=""" 1

... =g> 2

... isa goal 3

... state 'retrieving' 4

2.11. THE ENVIRONMENT IN ACT-R 37

... =visual> 5

... isa _visual 6

... value =val 7

... ==> 8

... =g> 9

... isa goal 10

... state 'retrieval_done' 11

... +retrieval> 12

... isa word 13

... form =val""") 14

The last two rules are specified below. They consider two possibilities: (i) a chunk was
retrieved (the first rule), (ii) no chunk was found (the second rule). The rules should look
familiar, the only new bits are lines 12 – 15 and 45 – 48. These lines set the motor module in
action. The motor module is there only to carry out a task, which is done using the special
chunk _manual. The chunk has two slots: cmd (what command should be carried out) and
key (what key should be pressed).

[py51] >>> model.productionstring(name="can_recall", string=""" 1

... =g> 2

... isa goal 3

... state 'retrieval_done' 4

... ?retrieval> 5

... buffer full 6

... state free 7

... ==> 8

... =g> 9

... isa goal 10

... state 'done' 11

... +manual> 12

... isa _manual 13

... cmd press_key 14

... key 'J'""") 15

16

>>> model.productionstring(name="cannot_recall", string=""" 17

... =g> 18

... isa goal 19

... state 'retrieval_done' 20

... ?retrieval> 21

... buffer empty 22

... state error 23

... ==> 24

... =g> 25

... isa goal 26

... state 'done' 27

... +manual> 28

... isa _manual 29

... cmd press_key 30

... key 'F'""") 31

Before we run the simulation of the model, we have to specify one last bit: what should

38 CHAPTER 2. BASICS OF ACT-R

appear on the screen. We use a dictionary data structure for that. The dictionary data struc-
ture is represented using {} brackets and it consists of key-value pairs. Values can them-
selves be dictionaries.

[py52] >>> word = {1: {'text': 'elephant', 'position': (320, 180)}} 1

We specify here that our first (and only) stimulus is printing the word elephant in the position
320x180 pixels.

Initializing the simulation is done below.

[py53] >>> sim = model.simulation(realtime=True, gui=False, environment_process=environment.environment_process, stimuli=word, triggers='', times=1)1

Unlike in previous models, we now call the simulation with various arguments. The
first argument (realtime) states that the simulation should proceed in real time. gui speci-
fies whether a graphical user interface (a separate window) should be started to represent
the environment (this option is switched off here, but by all means, switch it on on your
computer by setting the argument to True). The third argument states what environment
process should appear in our environment. You could in principle create your own but there
is one predefined in the class Environment. This will print stimuli and after a specific time
elapses or the right trigger is pressed, it will remove the stimulus and print a new one (or
end). The following three arguments (stimuli, triggers and times) specify values in the en-
vironment process. The first one states what stimuli should be printed. In our case, this will
be the word elephant, as specified in the variable word. The second one states what triggers
the process should respond to (we assume that it should not respond to anything. The last
argument states how long the stimulus should be printed (1 s).

We run the simulation using the method run.

[py54] >>> sim.run(2) 1

(0, 'PROCEDURAL', 'CONFLICT RESOLUTION') 2

(0, 'PROCEDURAL', 'RULE SELECTED: find_word') 3

****Environment: {1: {'position': (320, 180), 'text': 'elephant'}} 4

(0.05, 'PROCEDURAL', 'RULE FIRED: find_word') 5

(0.05, 'g', 'MODIFIED') 6

(0.05, 'visual_location', 'CLEARED') 7

(0.05, 'visual_location', "ENCODED LOCATION:'_visuallocation(color=None, screen_x=320, screen_y=180)'")8

(0.05, 'PROCEDURAL', 'CONFLICT RESOLUTION') 9

(0.05, 'PROCEDURAL', 'RULE SELECTED: attend_probe') 10

(0.1, 'PROCEDURAL', 'RULE FIRED: attend_probe') 11

(0.1, 'g', 'MODIFIED') 12

(0.1, 'visual_location', 'CLEARED') 13

(0.1, 'visual', 'PREPARATION TO SHIFT VISUAL ATTENTION STARTED') 14

(0.1, 'PROCEDURAL', 'CONFLICT RESOLUTION') 15

(0.1, 'PROCEDURAL', 'NO RULE FOUND') 16

(0.123, 'visual', 'CLEARED') 17

(0.123, 'visual', "ENCODED VIS OBJECT:'_visual(cmd=move_attention, color=None, screen_pos=_visuallocation(color=None, screen_x=320, screen_y=180), value=elephant)'")18

(0.123, 'PROCEDURAL', 'CONFLICT RESOLUTION') 19

(0.123, 'PROCEDURAL', 'RULE SELECTED: recalling') 20

(0.173, 'PROCEDURAL', 'RULE FIRED: recalling') 21

(0.173, 'g', 'MODIFIED') 22

(0.173, 'retrieval', 'START RETRIEVAL') 23

2.11. THE ENVIRONMENT IN ACT-R 39

(0.173, 'PROCEDURAL', 'CONFLICT RESOLUTION') 24

(0.173, 'PROCEDURAL', 'NO RULE FOUND') 25

(0.2212, 'visual', 'PREPARATION TO SHIFT VISUAL ATTENTION COMPLETED') 26

(0.2212, 'PROCEDURAL', 'CONFLICT RESOLUTION') 27

(0.2212, 'PROCEDURAL', 'NO RULE FOUND') 28

(0.223, 'retrieval', 'CLEARED') 29

(0.223, 'retrieval', 'RETRIEVED: word(form=elephant)') 30

(0.223, 'PROCEDURAL', 'CONFLICT RESOLUTION') 31

(0.223, 'PROCEDURAL', 'RULE SELECTED: can_recall') 32

(0.273, 'PROCEDURAL', 'RULE FIRED: can_recall') 33

(0.273, 'g', 'MODIFIED') 34

(0.273, 'manual', 'COMMAND: press_key') 35

(0.273, 'PROCEDURAL', 'CONFLICT RESOLUTION') 36

(0.273, 'PROCEDURAL', 'NO RULE FOUND') 37

(0.3321, 'visual', 'SHIFT COMPLETE TO POSITION: [320, 182]') 38

(0.3321, 'PROCEDURAL', 'CONFLICT RESOLUTION') 39

(0.3321, 'PROCEDURAL', 'NO RULE FOUND') 40

(0.423, 'manual', 'PREPARATION COMPLETE') 41

(0.423, 'PROCEDURAL', 'CONFLICT RESOLUTION') 42

(0.423, 'PROCEDURAL', 'NO RULE FOUND') 43

(0.473, 'manual', 'INITIATION COMPLETE') 44

(0.473, 'PROCEDURAL', 'CONFLICT RESOLUTION') 45

(0.473, 'PROCEDURAL', 'NO RULE FOUND') 46

(0.483, 'manual', 'KEY PRESSED: J') 47

(0.483, 'PROCEDURAL', 'CONFLICT RESOLUTION') 48

(0.483, 'PROCEDURAL', 'NO RULE FOUND') 49

(0.573, 'manual', 'MOVEMENT FINISHED') 50

(0.573, 'PROCEDURAL', 'CONFLICT RESOLUTION') 51

(0.573, 'PROCEDURAL', 'NO RULE FOUND') 52

(1, 'PROCEDURAL', 'CONFLICT RESOLUTION') 53

(1, 'PROCEDURAL', 'NO RULE FOUND') 54

Let us first consider the general picture this trace paints. In this model, we see that it
should take roughly 450 ms to find a stimulus, decide whether it is a word and to press the
right key (check the event ‘KEY PRESSED’). This is slightly faster than 500-600 ms usually
found in lexical decision tasks (Forster, 1990; Murray and Forster, 2004). But notice that while
we model eye movement and finger movement in quite some detail, we completely abstract
away from memory retrieval. The retrieval always takes 50 ms regardless of any parameter
of the word. This is definitely not correct. We will improve the state of affairs in the next
chapter.

Before going there, we notice that there are a few new things in the trace of the model.
They represent the visual model and the motor model. The events of the first model are
signalled by the name ‘visual’ and they simulate attention to a visual object. The events of
the second model appear under the name of ‘motor’. What do they mean? We will explain
that in the next two sections.

2.11.4 Vision in ACT-R

Traditionally, it has been assumed that attention corresponds to the focus position of eyes
(see, e.g., Just and Carpenter 1980; Just et al. 1982), so to understand what one attends it

40 CHAPTER 2. BASICS OF ACT-R

suffices to look at one’s eye positions. But this is too simplistic. In reading, it is known that
some words (especially high-frequent ones) are processed without ever receiving eye focus
(Schilling et al., 1998; Rayner, 1998, a.o.). The EMMA model captures this by disassociating
eye focus and attention: the two processes are related but not identical.

A shift of attention to a visual object (the command move_attention) triggers an imme-
diate attempt to encode the object as an internal representation. At the same time, it also
triggers eye movement. However, the two processes proceed independently of each other.

The time needed to encode an object, tenc is modeled using a gamma distribution as
follows:

(4) tenc ≈ Gamma(shape = Tenc, scale = Tenc/9)

That is, it is the gamma distribution with mean Tenc and the standard deviation Tenc
3 . The

parameter Tenc is found using the following formula:

(5) Tenc = Kekd

Where:

• d is a distance between the current focal point of the eyes and the object to be encoded,
measured in degrees of visual angle

• k is a free parameter, scaling the effect of distance (it is set at 1 by default)

• K is a free parameter, scaling the encoding time itself (set at 0.01 by default)

The time needed to shift eyes to the new object is split into two sub-processes: preparation
and execution. The preparation is modeled as a gamma distribution with mean 135 ms and
standard deviation 45 ms. The execution, which follows the preparation, is modeled as a
gamma distribution with mean 70 ms + 2 ms for every degree of visual angle between the
current eye position and the targeted visual object, and standard deviation one third of the
mean. It is only at the end of the execution that eyes focus the new position. Thus, the
whole process of eye movement takes around 200 ms, which corresponds to average saccade
latencies reported in previous studies (see, e.g., Fuchs 1971).

In the trace of the model, [py54], the time point of encoding a visual object is signalled
by the event ‘ENCODED VIS OBJECT’. The end of the preparation phase is signalled by
‘PREPARATION TO SHIFT VISUAL ATTENTION COMPLETED’. The end of the execution
shift is signalled by ‘SHIFT COMPLETE TO POSITION’. It is only at the last event that eyes
end up at the new location, but the internal representation of the object has been encoded for
a long time at this point as you can check, so cognitive processes had time to proceed while
eyes were moving to a new position.

How do visual encoding and eye movements interact? Three options could take place.
First, encoding could be done before the end of the preparation phase. (This is the case here.)
If the following cognitive processes are rapid enough to cancel eye movement or reques a
new position before the end of the preparation phase, eye shift to is interrupted. (This is
not the case here, hence eye shift is carried out.) Second, encoding could be finished during
the execution phase. At that point, eye movement cannot be stopped any more. Finally,
it could happen that visual encoding is still not done after eyes shift to a new position. In
that case encoding is re-started. Given the original time needed to encode, tenc, and the time

2.11. THE ENVIRONMENT IN ACT-R 41

completed in the original encoding, tc, and the new encoding time, t′enc, the new time to
encode is calculated as:

(6) t = (1− (tc/tenc) ∗ t′enc

Since the eye position is now closer to the object, the new process should proceed faster
and it is furthermore decreased by the amount of encoding that was already achieved.

2.11.5 Manual processes in ACT-R

Similarly to the vision module, the motor module is split in several sub-phases when car-
rying out a command: the preparation phase, the initiation phase, the actual key press and
finishing the movement (returning to the original position). As in the case of the visual mod-
ule, cognitive processes can interrupt a movement, but only during the preparation phase.
The time needed to carry out every phase is dependent on several variables:

[py1] Is this the first movement or not? If something was pressed before, was it pressed with
the same hand or not? Answers to these questions influence the amount of time the
preparation phase takes.

[py2] Is the key to be pressed on the home row or not? The answer to this question influences
the amount of time the actual movement requires, as well as the preparation phase.

TODO - bottom up parser; the code for that has to be cleaned up because of changes to
pyactr since the last time

2.11.6 Exercises

Exercise 1

In our model, visual object encoding was faster than the preparation of the eye shift. Try
to get the encoding follow the preparation phase and the execution phase. You could do
that in two ways: (i) by changing the position of the object and/or the original focus posi-
tion; (ii) by changing the parameters related to visual encoding (eye_mvt_angle_parameter
and/or eye_mvt_scaling_parameter); these parameters are specified when initializing an
ACT-R model, e.g., by stating:

[py55] >>> actr.ACTRModel(environment=environment,\ 1

... automatic_visual_search=False, eye_mvt_angle_parameter=10) 2

<pyactr.model.ACTRModel object at 0x7fb347921320> 3

Exercise 2

In the model, only one stimulus was used. But in experiments, it is standard that many
stimuli follow each other. Recode the model so it could simulate lexical decision on two (or
more) stimuli following each other (e.g., find the word, recall the word, press the key, wait
for the next stimulus etc.). In order to test the model, you’ll also need to change the stimuli
you use in your enviornment. They should look as follows:

42 CHAPTER 2. BASICS OF ACT-R

[py56] >>> word = [{1: {'text': 'elephant', 'position': (320, 180)}},\ 1

... {1: {'text': 'wug', 'position': (220, 140)}}] 2

To break this down, multiple stimuli are written as a list (enclosed in the [] brackets) and
each element in the list is one stimulus, appearing on a screen for the amount of time given
when starting simulation.

2.11. THE ENVIRONMENT IN ACT-R 43

Appendix: The agreement model

File ch2_agreement.py:

""" 1

An example of a very simple model that simulates subject-verb agreement. We abstract away from syntactic parsing.2

""" 3

4

import pyactr as actr 5

6

car = actr.makechunk(nameofchunk="car",\ 7

typename="word", phonology="/ka:/", meaning="[[car]]", category="noun", number="sg", syncat="subject")8

9

agreement = actr.ACTRModel() 10

11

dm = agreement.DecMem() 12

dm.add(car) 13

14

retrieval = agreement.dmBuffer(name="retrieval", declarative_memory=dm) 15

16

g = agreement.goal(name="g") 17

g.add(actr.chunkstring(string="isa word task agree category 'verb'")) 18

19

agreement.productionstring(name="agree", string=""" 20

=g> 21

isa word 22

task trigger_agreement 23

category 'verb' 24

=retrieval> 25

isa word 26

category 'noun' 27

syncat 'subject' 28

number =x 29

==> 30

=g> 31

isa word 32

task done 33

category 'verb' 34

number =x 35

""") 36

37

agreement.productionstring(name="retrieve", string=""" 38

=g> 39

isa word 40

task agree 41

category 'verb' 42

?retrieval> 43

buffer empty 44

==> 45

=g> 46

isa word 47

task trigger_agreement 48

44 CHAPTER 2. BASICS OF ACT-R

category 'verb' 49

+retrieval> 50

isa word 51

category 'noun' 52

syncat 'subject' 53

""") 54

55

agreement.productionstring(name="done", string=""" 56

=g> 57

isa word 58

task done 59

category 'verb' 60

number =x 61

==> 62

~g>""") 63

64

if __name__ == "__main__": 65

x = agreement.simulation() 66

x.run() 67

Appendix: The top-down parser

File ch2_topdown_parser.py:

""" 1

A simple top-down parser. 2

""" 3

4

import pyactr as actr 5

6

actr.chunktype("parsing", "task stack_top stack_bottom parsed_word ") 7

actr.chunktype("sentence", "word1 word2 word3") 8

9

parser = actr.ACTRModel() 10

11

dm = parser.DecMem() 12

dm.add(actr.chunkstring(string="isa word form 'Mary' cat 'ProperN'")) 13

dm.add(actr.chunkstring(string="isa word form 'Bill' cat 'ProperN'")) 14

dm.add(actr.chunkstring(string="isa word form 'likes' cat 'V'")) 15

16

retrieval = parser.dmBuffer(name="retrieval", declarative_memory=dm) 17

18

g = parser.goal(name="g") 19

g2 = parser.goal(name="g2", set_delay=0.2) 20

g.add(actr.chunkstring(string="isa parsing task parse stack_top 'S'")) 21

g2.add(actr.chunkstring(string="isa sentence word1 'Mary' word2 'likes' word3 'Bill'"))22

23

parser.productionstring(name="expand: S->NP VP", string=""" 24

=g> 25

isa parsing 26

task parse 27

2.11. THE ENVIRONMENT IN ACT-R 45

stack_top 'S' 28

==> 29

=g> 30

isa parsing 31

stack_top 'NP' 32

stack_bottom 'VP' 33

""") 34

35

parser.productionstring(name="expand: NP->ProperN", string=""" 36

=g> 37

isa parsing 38

task parse 39

stack_top 'NP' 40

==> 41

=g> 42

isa parsing 43

stack_top 'ProperN' 44

""") 45

46

parser.productionstring(name="retrieve: ProperN", string=""" 47

=g> 48

isa parsing 49

task parse 50

stack_top 'ProperN' 51

=g2> 52

isa sentence 53

word1 =w1 54

==> 55

=g> 56

isa parsing 57

task retrieving 58

=g2> 59

isa sentence 60

+retrieval> 61

isa word 62

form =w1 63

""") 64

65

parser.productionstring(name="retrieve: V", string=""" 66

=g> 67

isa parsing 68

task parse 69

stack_top 'V' 70

=g2> 71

isa sentence 72

word1 =w1 73

==> 74

=g> 75

isa parsing 76

task retrieving 77

=g2> 78

isa sentence 79

46 CHAPTER 2. BASICS OF ACT-R

+retrieval> 80

isa word 81

form =w1 82

""") 83

84

parser.productionstring(name="scan: string", string=""" 85

=g> 86

isa parsing 87

task retrieving 88

stack_top =y 89

stack_bottom =x 90

=retrieval> 91

isa word 92

form =w1 93

cat =y 94

=g2> 95

isa sentence 96

word1 =w1 97

word2 =w2 98

word3 =w3 99

==> 100

=g> 101

isa parsing 102

task print 103

stack_top =x 104

stack_bottom empty 105

parsed_word =w1 106

=g2> 107

isa sentence 108

word1 =w2 109

word2 =w3 110

word3 empty 111

""") 112

113

parser.productionstring(name="expand: VP -> V NP", string=""" 114

=g> 115

isa parsing 116

task parse 117

stack_top 'VP' 118

==> 119

=g> 120

isa parsing 121

stack_top 'V' 122

stack_bottom 'NP' 123

""") 124

125

parser.productionstring(name="print parsed word", string=""" 126

=g> 127

isa parsing 128

task print 129

=g2> 130

isa sentence 131

2.11. THE ENVIRONMENT IN ACT-R 47

word1 ~empty 132

==> 133

=g2> 134

isa sentence 135

!g> 136

show parsed_word 137

=g> 138

isa parsing 139

task parse 140

parsed_word None""") 141

142

parser.productionstring(name="done", string=""" 143

=g> 144

isa parsing 145

task print 146

=g2> 147

isa sentence 148

word1 empty 149

==> 150

!g> 151

show parsed_word 152

~g2> 153

~g>""") 154

155

if __name__ == "__main__": 156

x = parser.simulation() 157

x.run() 158

print(dm) 159

Appendix: The lexical decision model

File ch2_lexical_decision_1.py:
?? PythonTeX ??

48 CHAPTER 2. BASICS OF ACT-R

Chapter 3

Performance

3.1 Introduction

The goal of ACT-R is to provide accurate cognitive models of learning and performance, as
well as neural mapping of cognitive activities. So far, our models were lacking in all these
respects. We will start closing the gap by considering several cases of how ACT-R is mapped
to performance.

When studying performance, we are usually interested in two measures: (i) what re-
sponse people choose given some stimulus, (ii) how much time it takes them to react. In
linguistics, the first measure often appears as the “Accept–Reject” response when people
judge the grammatical or interpretational status of a sentence or a discourse. But other re-
sponses can fit here, as well, for example, answers in forced-choice tasks, responses in lexical
decision tasks etc. The second measure often encodes how much time it took one to choose
a particular response, but other options also exist, e.g., how much time it took to shift eye
gaze, to move a mouse etc. We will now go into the part of ACT-R models that can make
predictions on both counts.

3.2 Understanding the (basic) activation equation

(7) Activation equation: Ai = Bi + ∑
j∈C

WjSji, for a chunk i and elements j that are part of

the current goal chunk.
This equation has three major components:

a. Base-level learning equation: Bi = log
(

n
∑

k=1
t−d
k

)
= log

(
n
∑

k=1

1√
tk

)
(since usually d =

0.5), where tk is the time since the k-th practice / access of chunk i.

b. Attentional weighting equation: Wj =
W
n

c. Associative strength equation: Sji ≈ log
(

prob(i|j)
prob(i)

)
49

50 CHAPTER 3. PERFORMANCE

3.2.1 The base-level learning equation

(8) Base-level learning equation: Bi = log
(

n
∑

k=1
t−d
k

)
= log

(
n
∑

k=1

1√
tk

)
(since usually d =

0.5), where tk is the time since the k-th practice / access of chunk i.

(9) Anderson and Schooler (1991, 396):

In this paper we explore the issue of whether human memory is behav-
ing optimally with respect to the pattern of past information presentation.
Each item in memory has had some history of past use. For instance, our
memory for one person’s name may not have been used in the past month
but might have been used five times in the month previous to that. What
is the probability that the memory will be needed (used) during the con-
ceived current day? Memory would be behaving optimally if it made this
memory less available than memories that were more likely to be used but
made it more available than less likely memories.
In this paper we examine a number of environmental sources to determine
how probability of a memory being needed varies with pattern of past use.

Let’s first examine the Ebbinghaus (1913) retention data presented in his chapter 7.

(10) Ebbinghaus (1913, ch. 7) retention data

a. Stimulus materials: nonsense CVC syllables, about 2300 in number; mixed to-
gether, randomly selected to construct series of different lengths.

b. Method: learning to criterion; the subject repeats the material as many times as
necessary to reach a prespecified level of accuracy (e.g., one perfect reproduction).

c. Retention measure: ‘savings’, i.e., subtracting the number of repetitions required
to relearn material to a criterion from the number originally required to learn the
material to the same criterion.

> ebbinghaus_data = read.csv("ebbinghaus_retention_data.csv", header=T)

> ebbinghaus_data

delay_in_hours percent_savings

1 0.33 58.2

2 1.00 44.2

3 8.80 35.8

4 24.00 33.7

5 48.00 27.8

6 144.00 25.4

7 744.00 21.1

> summary(ebbinghaus_data)

3.2. UNDERSTANDING THE (BASIC) ACTIVATION EQUATION 51

delay_in_hours percent_savings

Min. : 0.3 Min. :21.1

1st Qu.: 4.9 1st Qu.:26.6

Median : 24.0 Median :33.7

Mean :138.6 Mean :35.2

3rd Qu.: 96.0 3rd Qu.:40.0

Max. :744.0 Max. :58.2

52 CHAPTER 3. PERFORMANCE

●

●

●
●

●

●

●20

30

40

50

60

0 200 400 600 800
Delay (hours)

S
av

in
gs

 (
pe

rc
en

t)
(a) Ebbinghaus retention data:

non−transformed data

●

●

●
●

●

●

●

e3

e3.2

e3.4

e3.6

e3.8

e4

0 200 400 600 800
Delay (hours)

S
av

in
gs

 (
lo

g
pe

rc
en

t)

(b) Ebbinghaus retention data:
log performance (i.e., log savings), base e

●

●

●
●

●

●

●

e3

e3.2

e3.4

e3.6

e3.8

e4

e−2 e0 e2 e4 e6

Delay (log hours)

S
av

in
gs

 (
lo

g
pe

rc
en

t)

(c) Ebbinghaus retention data:
log−log (log delay, log savings), base e

Figure 3.1: Ebbinghaus retention data

3.2. UNDERSTANDING THE (BASIC) ACTIVATION EQUATION 53

The forgetting curve plotted in panel (a) of Figure 3.1 is sometimes taken to reflect an
underlying negative exponential forgetting function of the form:

(11) P = Ae−bT, where P is the performance measure (percent savings in the Ebbinghaus
data), T is the delay in time, and A, b are the parameters of the model.

But this predicts that performance should be a linear function of time if we log-transform
P, and panel (b) of Figure 3.1 shows that is not the case:

(12) log(P) = log(A)− bT

Instead, we see a power function, as panel (c) of Figure 3.1 shows. That is, performance
is a linear function of time only if you log-transform both of them:

(13) log(P) = log(A)− b log(T), i.e., P = AT−b

The base-level learning equation Bi = log
(

n
∑

k=1
t−d
k

)
reflects exactly this: the base-level

activation Bi is basically a log-performance value.
The basic idea of the account in Anderson and Schooler (1991):

(14) The basic idea is that at any point in time, memories vary in how likely
they are to be needed and the memory system tries to make available those
memories that are most likely to be useful. The memory system can use
the past history of use of a memory to estimate whether the memory is
likely to be needed now. This view sees human memory in some sense as
making a statistical inference. However, it does not imply that memory
is explicitly engaged in statistical computations. Rather, the claim is that
whatever memory is doing parallels a correct statistical inference.
What memory is inferring is something we call the need probability, which
is the probability that we will need a particular memory trace now. The
basic assumption developed in Anderson (1990) is that memories are con-
sidered in order of their need probabilities until the need probability is so
low that it no longer is worth considering any more. If we let p be the
need probability, C be the cost of considering a memory, and G be the gain
associated with a successful retrieval, one should stop when C > pG.
Despite the description of this process in terms that evoke images of memo-
ries being considered one at a time, there are equivalent parallel processes.
We prefer a parallel model in which different memories are allocated dif-
ferent resources according to their need probability.
[. . .]
This analysis does allow predictions to be derived about the relationship
between need probability and the dependent measures of recall latency and
recall accuracy. With respect to recall latency, the critical assumption is that
there is a distribution of memories in terms of their estimated need prob-
abilities. The reasonable assumption is that there will be a mass of need
probabilities near zero with a tail of a few higher probability memories; that

54 CHAPTER 3. PERFORMANCE

is, to say the distribution of memories will be J-shaped or highly skewed. It
is more convenient to think about the shape of such a distribution in terms
of need odds. If p is need probability, then q = p/(1 − p) will be need
odds. An odds measure has the advantage of varying from zero to infinity.
Thus, the expectation is that most memories will have near-zero odds and
a rapidly diminishing few will have higher odds. (Anderson and Schooler,
1991, 400)

In sum:

(15) The base-level activation equation encodes that (see Anderson and Schooler 1991,
407, and Anderson et al. 2004, 1042):

a. the strength of a memory trace provides an encoding of its need odds memory
performance (base-level activation tracks log odds);

b. the strengths from individual presentations sum to produce a total strength (each
presentation has an impact on odds, and the impacts of different presentations
add up);

c. strengths of individual presentations decay as a power function of the time (the
fact that the impact on odds of an individual presentation decays as a power
function produces the power law of forgetting).

Let’s work through some examples. Assume we have a fact – it can be an addition fact
like the one below, or the lexical representation of a word etc.

(16) a. A chunk of type ADDITION-FACT with slots ADDEND1, ADDEND2 and SUM which
models the fact 5 + 2 = 7. The slot values are the primitive elements 5, 2 and 7,
respectively. Chunks are boxed, whereas primitive elements are simple text. A
simple arrow () signifies that the chunk at the start of the arrow has the value
at the end of the arrow in the slot with the name that labels the arrow.

ADDITION-FACT5 2

7

ADDEND1 ADDEND2

SUM

b. The same chunk represented as an attribute-value matrix (AVM). We’ll use only
AVM representations from now on. The various components of the activation
equation have been added.

ADDITION-FACT
(

Bi

)

ADDEND1

(
Sji

)
: 5

(
Wj

)
ADDEND2

(
Sji

)
: 2

(
Wj

)
SUM: 7

3.2. UNDERSTANDING THE (BASIC) ACTIVATION EQUATION 55

Assume this chunk is presented 5 times, once every 300 ms, starting at time 0 ms. We
want to plot its base-level activation for the first 3500 ms.

We define a base_activation function: its inputs are the presentation times for the
chunk, and also the moments of time at which to obtain activation. The output is the base-
level activation values at the corresponding moments of time.

> base_activation <- function(pres_times, moments) {

+ base_act = numeric(length=length(moments))

+ for (i in 1:length(moments)) {

+ base_act[i] = sum(1/sqrt(moments[i] - pres_times[pres_times<moments[i]]))

+ }

+ base_act[which(base_act!=0)] = log(base_act[which(base_act!=0)])

+ return(base_act)

+ }

>

> pres_times = seq(0, 1200, length.out=5)

> moments = 0:3500

> base_act = base_activation(pres_times, moments)

● ● ● ● ●−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0 200
400

600
800

1000
1200

1400
1600

1800
2000

2200
2400

2600
2800

3000
3200

3400
3600

Time (ms)

B
as

e−
le

ve
l a

ct
iv

at
io

n

● ●Base−level activation Presentation times

Base−level activation with 5 presentations

Figure 3.2: Base-level activation as a function of time

56 CHAPTER 3. PERFORMANCE

3.2.2 The attentional weighting equation

(17) Attentional weighting equation: Wj =
W
n

W is usually set to 1, so the attention weights are usually 1
n , where n is the number of

sources of activation / terms.

3.2.3 The associative strength equation

(18) Associative strength equation: Sji ≈ log
(

prob(i|j)
prob(i)

)
Sji is usually set to S− log(fanj), where fanj is the number of facts associated with term j.

S is usually set to 2.

3.3 Activation, probability of retrieval, and latency of retrieval

(19) Probability of retrieval equation: Pi =
1

1+e−
Ai−τ

s
, where s is the noise parameter and is

typically set at about 0.4, and τ the retrieval threshold.

(20) Latency of retrieval equation: Ti = Fe−Ai , where F is the latency factor.

(21) The threshold τ and the latency factor F vary from model to model, but there is a
general relationship between them:
F ≈ 0.35eτ

i.e., the retrieval latency at threshold (when Ai = τ) is approximately 0.35 seconds.

Let’s plot the probability and latency of retrieval for the same hypothetical case as above,
assuming the activation of the items is just the base-level activation. We assume:

• noise s = 0.4

• threshold τ = −2

• latency factor F = 50 (ms)

Note that according to the above equation, F ≈ 0.35e−2 ≈ 0.35× 0.1353 ≈ 0.04736 (s), so
our value of 50 ms is very close to this. Also note that this value is different from F = 0.46 in
Vasishth et al. (2008, 692)), or F = 0.14 in Lewis and Vasishth (2005, 382).

> pres_times = seq(0, 1200, length.out=5)

> moments = 0:3500

> base_act = base_activation(pres_times, moments)

>

> s = 0.4

> tau = -2

> F = 50 # in ms

>

> prob_retrieval = 1/(1 + exp(-(base_act - tau)/s))

> latency_retrieval = F * exp(-base_act)

3.3. ACTIVATION, PROBABILITY OF RETRIEVAL, AND LATENCY OF RETRIEVAL 57

58 CHAPTER 3. PERFORMANCE

● ● ● ● ●−3.0
−2.5
−2.0
−1.5
−1.0
−0.5

0.0

0 200
400

600
800

1000
1200

1400
1600

1800
2000

2200
2400

2600
2800

3000
3200

3400
3600

Time (ms)

B
as

e−
le

ve
l a

ct
iv

at
io

n

● ●Base−level activation Presentation times

● ● ● ● ●0.0

0.2

0.4

0.6

0.8

1.0

0 200
400

600
800

1000
1200

1400
1600

1800
2000

2200
2400

2600
2800

3000
3200

3400
3600

Time (ms)

P
ro

ba
bi

lit
y

of
 r

et
rie

va
l

● ●Probability of retrieval Presentation times

● ● ● ● ●0

200

400

600

800

0 200
400

600
800

1000
1200

1400
1600

1800
2000

2200
2400

2600
2800

3000
3200

3400
3600

Time (ms)

La
te

nc
y

of
 r

et
rie

va
l (

m
s)

● ●Latency of retrieval Presentation times

Figure 3.3: Base-level activation, probability of retrieval, and latency of retrieval as a function
of time

3.3. ACTIVATION, PROBABILITY OF RETRIEVAL, AND LATENCY OF RETRIEVAL 59

3.3.1 Probability of retrieval

Let’s take a closer look at probability of retrieval. We plot the odds of retrieval in addition to
probability of retrieval, and also plot odds against activation.

> pres_times = seq(0, 1200, length.out=5)

> moments = 0:3500

> base_act = base_activation(pres_times, moments)

>

> s = 0.4

> tau = -2

>

> prob_retrieval = 1/(1 + exp(-(base_act - tau)/s))

> odds_retrieval = exp((base_act - tau)/s)

60 CHAPTER 3. PERFORMANCE

● ● ● ● ●

Threshold

−3.0
−2.5
−2.0
−1.5
−1.0
−0.5

0.0

0 200
400

600
800

1000
1200

1400
1600

1800
2000

2200
2400

2600
2800

3000
3200

3400
3600

Time (ms)

B
as

e−
le

ve
l a

ct
iv

at
io

n

● ●Base−level activation Presentation times

● ● ● ● ●

Threshold

0.0

0.2

0.4

0.6

0.8

1.0

0 200
400

600
800

1000
1200

1400
1600

1800
2000

2200
2400

2600
2800

3000
3200

3400
3600

Time (ms)

P
ro

ba
bi

lit
y

of
 r

et
rie

va
l

● ●Probability of retrieval Presentation times

● ● ● ● ●

Threshold

e−2

e0

e2

e4

0 200
400

600
800

1000
1200

1400
1600

1800
2000

2200
2400

2600
2800

3000
3200

3400
3600

Time (ms)

O
dd

s
of

 r
et

rie
va

l (
lo

g
sc

al
e) ● ●Odds of retrieval Presentation times

Figure 3.4: Base-level activation, probability of retrieval, and odds of retrieval as a function
of time

3.3. ACTIVATION, PROBABILITY OF RETRIEVAL, AND LATENCY OF RETRIEVAL 61

Let’s plot probability and odds of retrieval against activation. Note the linear relationship
between activation and odds of retrieval on the log scale, i.e., log-odds, i.e., logits.

62 CHAPTER 3. PERFORMANCE

Threshold

0.2

0.4

0.6

0.8

1.0

−3.0
−2.8

−2.6
−2.4

−2.2
−2.0

−1.8
−1.6

−1.4
−1.2

−1.0
−0.8

−0.6
−0.4

−0.2
0.0

0.2

Base−level activation

P
ro

ba
bi

lit
y

of
 r

et
rie

va
l

Threshold

0

50

100

150

200

−3.0
−2.8

−2.6
−2.4

−2.2
−2.0

−1.8
−1.6

−1.4
−1.2

−1.0
−0.8

−0.6
−0.4

−0.2
0.0

0.2

Base−level activation

O
dd

s
of

 r
et

rie
va

l

Threshold

e−2

e0

e2

e4

−3.0
−2.8

−2.6
−2.4

−2.2
−2.0

−1.8
−1.6

−1.4
−1.2

−1.0
−0.8

−0.6
−0.4

−0.2
0.0

0.2

Base−level activation

O
dd

s
of

 r
et

rie
va

l (
lo

g
sc

al
e)

Figure 3.5: Probability and odds of retrieval as a function of activation

3.3. ACTIVATION, PROBABILITY OF RETRIEVAL, AND LATENCY OF RETRIEVAL 63

3.3.2 Latency of retrieval

Let’s plot time of retrieval and log time of retrieval against activation – and also against log
odds of retrieval. Note the linear relationship between activation and time of retrieval (or
odds of retrieval) on the log scale.

You can get an intuitive interpretation for the latency scale parameter F by looking at
how much time it takes to retrieve a chunk that has a threshold (τ) activation.

> pres_times = seq(0, 1200, length.out=5)

> moments = 0:3500

> base_act = base_activation(pres_times, moments)

>

> s = 0.4

> tau = -2

>

> prob_retrieval = 1/(1 + exp(-(base_act - tau)/s))

> odds_retrieval = exp((base_act - tau)/s)

>

> F = 50 # in ms

> latency_retrieval = F * exp(-base_act)

64 CHAPTER 3. PERFORMANCE

Threshold0

200

400

600

800

−3.0
−2.8

−2.6
−2.4

−2.2
−2.0

−1.8
−1.6

−1.4
−1.2

−1.0
−0.8

−0.6
−0.4

−0.2
0.0

0.2

Base−level activation

La
te

nc
y

of
 r

et
rie

va
l (

m
s)

Threshold

e4

e5

e6

−3.0
−2.8

−2.6
−2.4

−2.2
−2.0

−1.8
−1.6

−1.4
−1.2

−1.0
−0.8

−0.6
−0.4

−0.2
0.0

0.2

Base−level activation

La
te

nc
y

of
 r

et
rie

va
l (

m
s,

 lo
g

sc
al

e)

e4

e4.5

e5

e5.5

e6

e6.5

e−2 e0 e2 e4

Odds of retrieval (log scale)

La
te

nc
y

of
 r

et
rie

va
l (

m
s,

 lo
g

sc
al

e)

Figure 3.6: Time of retrieval as a function of activation and as a function of odds of retrieval

3.4. MODELLING PERFORMANCE 65

Sub-symbolic architecture of ACT-R
Adrian – fill in?
Retrieval – based on activation for a chunk i – Ai

Ai = Bi + ∑
k

∑
j

Wkj ∗ Sji

Base-level activation Bi

Bi = ln(
n

∑
j=1

(t−d
j)) + ε

Latency of retrieval:

T = Fe− f Ai

Failure of retrieval: whenever Ai below a particular threshold τ

3.4 Modelling performance

We will now consider several studies to justify the sub-symbolic part we just introduced.

3.4.1 Modelling lexical decision tasks

In the previous chapter, we introduced a simple lexical decision task. We noted there that
while the model might be sufficient (for our needs) in the way it simulates the interaction
with environment, it is too simplistic in its assumption about memory since memory re-
trievals are not dependent on any parameters of the retrieved word.

One very robust parameter affecting latencies and accuracies of lexical decision tasks
is frequency (Whaley, 1978). In fact, frequency effects have been found not just in lexical
decision tasks, but in many, if not all, tasks that involve some kind of lexical processing
(Forster, 1990; Monsell, 1991). Such frequency effects are not arbitrary, they impose a specific
form. It has been known since Howes and Solomon (1951) that lexical access can be well
approximated as the log-function of frequency.

While the approximation between log-frequency and lexical access is good, it is not per-
fect. Murray and Forster (2004), who studied the role of frequency in extreme detail, pointed
out limits of log-frequency. They collected responses and response times in the lexical de-
cision task using words from 16 frequency bands, as summarized in Table 3.1, and showed
that log-frequency gets middle values right, but it tends to underestimate the amount of time
needed to access the words at extreme ends of the frequency scale.

Murray and Forster (2004) take this as an argument for a specific information retrieval
mechanism, the so-called Rank Hypothesis (see Forster 1976, 1992). But as they note, this
is not the only way to model retrieval mechanism that fits their data. One popular method
is to treat frequency effects as skill learning, which is standardly represented as a power
function (Newell and Rosenbloom, 1981; Anderson, 1982; Logan, 1990). Since skill learning
is implemented in ACT-R, we will look at this approach in more detail.

66 CHAPTER 3. PERFORMANCE

Group Frequency range Mean frequency
1 315–197 242.0
2 100–85 92.8
3 60–55 57.7
4 42–39 40.5
5 32–30 30.6
6 24–23 23.4
7 19 19.0
8 16 16.0
9 14-13 13.4
10 12–11 11.5
11 10 10.0
12 9 9.0
13 7 7.0
14 5 5.0
15 3 3.0
16 1 1.0

Table 3.1: Frequency bands of words used in Murray and Forster (2004) (Exp. 1). Frequency
is reported in number of tokens per 1 million words

The power function could be seen as relating latencies to the number of practice trials.
We represent it in the following form:

(22) t = t0 + a ∗ x−b

t is the latency to be estimated. t0 is the asymptote, a is the multiplier, b the exponent (free
parameters), and x represents (some form of) practice, e.g., word frequency. Given what the
function describes, it also goes under the name of the power law of practice or the power law
of learning. For the lexical decision task, we could say the following: the function treats t,
the latency needed to decide that the stimulus is an existing word, as a function of frequency
to the power of −b, scaled and shifted from 0.

The power function has also been used to describe forgetting (Wickelgren, 1972; Ander-
son and Schooler, 1991; Schooler and Anderson, 1997). In that case, the independent variable
x in (22) represents the time elapsed between learning and testing. For the lexical decision
task, we could say that in the law of forgetting, the latency to recognize a word is the func-
tion of x, the time elapsed since learning the word, raised by the exponent of −b, scaled and
shifted from 0.

The two functions are closely related (see, e.g., Anderson and Lebiere 1998; Anderson
et al. 1999) and when there is only a single instance of learning they colapse. But they are not
identical, as we’ll see in a second.

Instances of both laws can be fitted in ACT-R. The second one is fit by modulating the d

3.4. MODELLING PERFORMANCE 67

parameter in base-level learning:

Bi = ln(
n

∑
j=1

(t−d
j)) + ε (3.1)

The first one is fit by modulating the f parameter in the formula that relates latency to
activation:

T = Fe− f Ai (3.2)

Which of the two is correct for lexical decision? Before being able to answer that, we have
to decide one issue: how is frequency related to the time elapsed between learning and the
experiment (tj in the formula above)? Let’s assume we have a 15-year old speaker. How
would we estimate time points at which a word was used?

We know how much time elapsed in his life. If we know how many words the speaker
was exposed to in total, we can easily calculate how many times a particular word was used
on average since we know their frequency. Keeping the simulation as general as possible we
can then let each word occurrence appear randomly during the life span.1

What remains to be solved is the amount of words a speaker is exposed to per year. A
good approximation of that, based on recordings of 42 families, can be found in Hart and Ris-
ley (1995). They estimate that children comprehend between 10 million to 35 million words a
year, depending to a large extent on the social class of the family, and this amount increases
linearly with age. According to the study, a 15-year old would be exposed to between 50
and 175 million words in total. We’ll consider the middle value, 112.5 million words, as the
total amount of words a speaker is exposed to. This is a very conservative measure (since
we ignore production, as well as the role of mass media) but that’s ok. It is important to
note that absolute numbers are of little consequence here, since we are not interested in the
absolute effect of frequency, but in its relative effect (i.e., at this point we do not want to predict
how much time a word from one frequency band requires, but how much a word requires
compared to a word from another frequency band).

With this background, we can fit three models to the data from the lexical decision task:

• The basic log-frequency model. This model is not related to ACT-R but it is a common
baseline in lexical decision tasks; it estimates the intercept + the scale parameter of
log-frequency.

• The ACT-R model representing the law of forgetting. The model estimates the inter-
cept, the d parameter and the parameter F. The last parameter scales activation to
match latencies more closely.

• The ACT-R model representing the law of practice. The model estimates the intercept,
the f parameter and the parameter F.

1Alternatively, we could simplify this and assume that word occurrences of every word are evenly spaced
during the lifetime. This makes computation easier and closely approximates random sampling in mid-
frequency and high-frequency words (but it underestimates activation of low-frequency words compared to
the random sampling method).

68 CHAPTER 3. PERFORMANCE

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

0.55

0.60

0.65

0.70

0 50 100 150 200 250
Frequency

R
T

Figure 3.7: Model fitting of Exp. 1, Murray and Forster (2004). The solid line represents the
best fit of the f parameter, the dashed line is the best fit of the d parameter, the dotted line is
the best fit of log-frequency to latencies.

Note that the second and third models are just specific instances of the power function shown
in (22), in which F is the multiplier, the intercept corresponds to t0 and f and d represent
exponents.

Fig. 3.7 compares the two instances of the law in ACT-R and the baseline log-frequency
model. In the figures we present the best fit of the f and the d parameters, as well as the
other free parameters of the power law: t0 and the scaling parameter a (which corresponds
to the latency factor F in ACT-R).

The log-model (the dotted line) represents a relatively good fit, even though, as we noted
above, it tends to underestimate latencies at extreme ends.

The second model, fitting the d parameter, is shown using the dashed line. This model is
worse than the baseline.

The best model is the third model, fitting the f parameter (the solid line). It is very close
to the log-model in mid-values, but unlike the log-model, it is also very close to the data in
the extreme ends of the scale.

All this shows that a lexical decision task can be modelled as a case of the law of practice.
More importantly, we also see that this law can be captured in ACT-R.

3.5 pyactr model of lexical decision

We will now show how the model that we considered in somewhat abstract terms can be
inputed in pyactr.

The best fit of the model had the following values: t0 should be 420 ms, f should be 0.14
and F should be 0.13. t0 represents the time it requires to do the task when disregarding the
retrieval of words.

3.5. PYACTR MODEL OF LEXICAL DECISION 69

We already created a model for lexical decision in the previous chapter. We will carry
that model over to this chapter, but we will assume one modification.

In the previous chapter, we assumed that the eye focus is away from the stimulus and
participants have to first look for the word on the screen (that is, using visual location, they
have to find it, and then they have to shift attention towards the word). That was fine when
we wanted to explore the properties of the visual module, but it’s hardly a good represen-
tation of how lexical decision tasks proceed. Normally it is signalled to participants where
a word would appear, precisely to avoid the delay caused by focus shifts. So let’s start the
simulation with the focus position of the middle of the screen (the same position where an
item will appear).

[py1] >>> import pyactr as actr 1

2

>>> environment = actr.Environment(focus_position=(320, 180)) 3

When calling the model, we will now have to specify two values in the parameters. The
f value is set up by latency_exponent, the F value by latency_factor. (For the full list of
ACT-R parameters and their names in the model, see Appendix.)

[py57] >>> model = actr.ACTRModel(environment=environment, subsymbolic=True, automatic_visual_search=True, retrieval_threshold=-5, latency_factor=0.13, latency_exponent=0.14, emma_noise=False)1

A careful readed probably noticed that we modified four other values: subsymoblic. automatic_visual_search,
emma_noise and retrieval_threshold. The first parameter simply states that we are going to
use the sub-symbolic system of ACT-R. The second parameter states that visual search is au-
tomatic: if a word appears on a screen, it is automatically buferred in the visual location, the
visual module will not wait for a specific command from production rules. The third param-
eter, emma_noise, controls whether the visual module should provide deterministic values, or
whether the values should be drawn from probability distributions, as discussed in Chapter
??. Since we do are not interested in simulating variance in visual encoding, we will simplify
the matter here and set this parameter to False (the visual module is fully deterministic).

The last parameter specifies the level of the retrieval threshold. The threshold controls
whether a chunk present in the memory can be retrieved or not: chunks whose activation
falls below the threshold cannot be retrieved. Since we at this point want all words to be
retrieved (we will modify that position later) and since the lowest activation is around -
4.5 given our calculation of activation, we have two options: either increase activation or
decrease the retrieval threshold. We noted in the previous section that the way we calculate
activation is very conservative and for this reason the first option might be preferred. For
example, we have a very conservative estimate of the average of words spoken per year. We
also count all the time in one’s life towards the chunk decay, while in reality some moments
(e.g., sleeping) most likely have less effect on decay of word knowledge than others. Taking
these considerations into account would definitely yield higher activation estimates. But the
second option (decreasing the retrieval threshold) is very simple and because of its simplicity,
we will use it here.

The rest of the model is identical to the first version of the lexical decision task, discussed
in the previous chapter:

[py58] >>> actr.chunktype("goal", "state") 1

>>> actr.chunktype("word", "form") 2

70 CHAPTER 3. PERFORMANCE

3

>>> model.productionstring(name="attend_probe", string=""" 4

... =g> 5

... isa goal 6

... state 'start' 7

... =visual_location> 8

... isa _visuallocation 9

... ==> 10

... =g> 11

... isa goal 12

... state 'recall' 13

... =visual_location> 14

... isa _visuallocation 15

... +visual> 16

... isa _visual 17

... cmd move_attention 18

... screen_pos =visual_location""") 19

20

>>> model.productionstring(name="prepare_retrieving", string=""" 21

... =g> 22

... isa goal 23

... state 'recall' 24

... =visual> 25

... isa _visual 26

... value =val 27

... ==> 28

... =g> 29

... isa goal 30

... state 'retrieving' 31

... word =val""") 32

33

>>> model.productionstring(name="retrieving", string=""" 34

... =g> 35

... isa goal 36

... state 'retrieving' 37

... word =val 38

... ==> 39

... =g> 40

... isa goal 41

... state 'retrieval_done' 42

... +retrieval> 43

... isa word 44

... form =val""") 45

46

>>> model.productionstring(name="can_recall", string=""" 47

... =g> 48

... isa goal 49

... state 'retrieval_done' 50

... ?retrieval> 51

... buffer full 52

... state free 53

... ==> 54

3.5. PYACTR MODEL OF LEXICAL DECISION 71

... ~g> 55

... +manual> 56

... isa _manual 57

... cmd press_key 58

... key 'J'""") 59

60

>>> model.productionstring(name="cannot_recall", string=""" 61

... =g> 62

... isa goal 63

... state 'retrieval_done' 64

... ?retrieval> 65

... buffer empty 66

... state error 67

... ==> 68

... ~g> 69

... +manual> 70

... isa _manual 71

... cmd press_key 72

... key 'F'""") 73

What is new, though, is the way we want to run this model. We are not simply interested
in inputing one word in the model and running the simulation with that. Rather, we want
to check what happens for any word representing the mean value of each band in the exper-
iment of Murray and Forster (2004). We will do this by creating the dictionary of words that
store their corresponding frequencies, as well as the experimentally observed reaction times:

[py59] >>> FREQ = {} 1

>>> FREQ['nothing'] = (242, 0.542) 2

>>> FREQ['section'] = (92, 0.555) 3

>>> FREQ['crowd'] = (58, 0.566) 4

>>> FREQ['bridge'] = (40.5, 0.562) 5

>>> FREQ['knife'] = (30.6, 0.57) 6

>>> FREQ['bunch'] = (23.4, 0.569) 7

>>> FREQ['medium'] = (19, 0.577) 8

>>> FREQ['subtle'] = (16, 0.587) 9

>>> FREQ['punish'] = (13.4, 0.592) 10

>>> FREQ['patent'] = (11.5, 0.605) 11

>>> FREQ['denial'] = (10, 0.603) 12

>>> FREQ['attain'] = (9, 0.575) 13

>>> FREQ['drain'] = (7, 0.62) 14

>>> FREQ['assault'] = (5, 0.607) 15

>>> FREQ['disdain'] = (3, 0.622) 16

>>> FREQ['amber'] = (1, 0.674) 17

We will now create a loop that

• picks one word from this dictionary

• creates a past experience for that word, based on the frequency of that word, by choos-
ing as many random moments in the past as the frequency of the word would allow

• runs the simulation with that past experience, using the word as a stimulus

72 CHAPTER 3. PERFORMANCE

• prints the time from the start of the simulation until pressing the key (i.e., the whole
procedure of lexical decision task)

• goes to Step 1

Since there is some randomization required, we will also have to import a new package,
random.

[py60] >>> import random 1

2

>>> SEC_IN_YEAR = 365*24*3600 3

>>> SEC_IN_TIME = 15*SEC_IN_YEAR 4

5

>>> for lemma in FREQ: 6

... dm = model.DecMem() 7

... for _ in range(int(FREQ[lemma][0]*112.5)): 8

... dm.add(actr.makechunk(typename="word", form=lemma), time=random.randint(-SEC_IN_TIME, 0))9

... word = {1: {'text': lemma, 'position': (320, 180)}} 10

... retrieval = model.dmBuffer("retrieval", dm) 11

... g = model.goal("g", default_harvest=dm) 12

... g.add(actr.makechunk(nameofchunk='start', typename="goal", state='start'))13

... environment.current_focus = [320,180] 14

... sim = model.simulation(realtime=False, gui=True, trace=False, environment_process=environment.environment_process, stimuli=word, triggers='', times=2)15

... while True: 16

... sim.step() 17

... if sim.current_event.action == "KEY PRESSED: J": 18

... print(lemma, FREQ[lemma], sim.show_time()) 19

... break 20

... 21

attain (9, 0.575) 0.5988 22

assault (5, 0.607) 0.6169 23

disdain (3, 0.622) 0.6351 24

amber (1, 0.674) 0.6643 25

drain (7, 0.62) 0.607 26

punish (13.4, 0.592) 0.5916 27

denial (10, 0.603) 0.5976 28

crowd (58, 0.566) 0.5601 29

nothing (242, 0.542) 0.5345 30

medium (19, 0.577) 0.5833 31

patent (11.5, 0.605) 0.5964 32

knife (30.6, 0.57) 0.5734 33

section (92, 0.555) 0.5507 34

subtle (16, 0.587) 0.585 35

bridge (40.5, 0.562) 0.5673 36

bunch (23.4, 0.569) 0.5788 37

The crucial bit in lines 22–37 (output) is the comparison of the last column, predicted
RTs, to the last but one column, observed RTs. The fit is very close. When you run the model,
predicted RTs will probably differ very slightly from the ones presented here since the results
depend on random sampling in the past experience. To get more robust findings, it would
be good to repeat this simulation several times and average observed RTs. But from our own
experience, that result will not drastically alter the goodness of the fit in this case.

3.6. EXERCISES 73

3.6 Exercises

3.6.1 Exercise 1

74 CHAPTER 3. PERFORMANCE

Appendix: The lexical decision model

File ch3_lexical_decision_2.py:

""" 1

A simple model of lexical decision. 2

""" 3

4

import random 5

6

import pyactr as actr 7

8

environment = actr.Environment(focus_position=(320, 180)) 9

model = actr.ACTRModel(environment=environment, subsymbolic=True, automatic_visual_search=True, activation_trace=False, retrieval_threshold=-5, latency_factor=0.13, latency_exponent=0.14, decay=0.5, eye_mvt_scaling_parameter=0.01, emma_noise=False)10

11

actr.chunktype("goal", "state") 12

actr.chunktype("word", "form") 13

14

SEC_IN_YEAR = 365*24*3600 15

SEC_IN_TIME = 15*SEC_IN_YEAR 16

17

FREQ = {} 18

FREQ['nothing'] = 242*112.5 19

FREQ['section'] = 92*112.5 20

FREQ['crowd'] = 58*112.5 21

FREQ['bridge'] = 40.5*112.5 22

FREQ['knife'] = 30.6*112.5 23

FREQ['bunch'] = 23.4*112.5 24

FREQ['medium'] = 19*112.5 25

FREQ['subtle'] = 16*112.5 26

FREQ['punish'] = 13.4*112.5 27

FREQ['patent'] = 11.5*112.5 28

FREQ['denial'] = 10*112.5 29

FREQ['attain'] = 9*112.5 30

FREQ['drain'] = 7*112.5 31

FREQ['assault'] = 5*112.5 32

FREQ['disdain'] = 3*112.5 33

FREQ['amber'] = 1*112.5 34

35

model.productionstring(name="attend_probe", string=""" 36

=g> 37

isa goal 38

state 'start' 39

=visual_location> 40

isa _visuallocation 41

==> 42

=g> 43

isa goal 44

state 'recall' 45

=visual_location> 46

isa _visuallocation 47

+visual> 48

3.6. EXERCISES 75

isa _visual 49

cmd move_attention 50

screen_pos =visual_location""") 51

52

model.productionstring(name="prepare_retrieving", string=""" 53

=g> 54

isa goal 55

state 'recall' 56

=visual> 57

isa _visual 58

value =val 59

==> 60

=g> 61

isa goal 62

state 'retrieving' 63

word =val""") 64

65

model.productionstring(name="retrieving", string=""" 66

=g> 67

isa goal 68

state 'retrieving' 69

word =val 70

==> 71

=g> 72

isa goal 73

state 'retrieval_done' 74

+retrieval> 75

isa word 76

form =val""") 77

78

model.productionstring(name="can_recall", string=""" 79

=g> 80

isa goal 81

state 'retrieval_done' 82

?retrieval> 83

buffer full 84

state free 85

==> 86

~g> 87

+manual> 88

isa _manual 89

cmd press_key 90

key 'J'""") 91

92

model.productionstring(name="cannot_recall", string=""" 93

=g> 94

isa goal 95

state 'retrieval_done' 96

?retrieval> 97

buffer empty 98

state error 99

==> 100

76 CHAPTER 3. PERFORMANCE

~g> 101

+manual> 102

isa _manual 103

cmd press_key 104

key 'F'""") 105

106

if __name__ == "__main__": 107

for lemma in FREQ: 108

for _ in range(10): 109

dm = model.DecMem() 110

for _ in range(int(FREQ[lemma])): 111

dm.add(actr.makechunk(typename="word", form=lemma), time=random.randint(-SEC_IN_TIME, 0))112

word = {1: {'text': lemma, 'position': (320, 180)}} 113

retrieval = model.dmBuffer("retrieval", dm) 114

g = model.goal("g", default_harvest=dm) 115

g.add(actr.makechunk(nameofchunk='start', typename="goal", state='start')) 116

environment.current_focus = [320,180] 117

sim = model.simulation(realtime=False, gui=True, trace=False, environment_process=environment.environment_process, stimuli=word, triggers='', times=2)118

while True: 119

sim.step() 120

if sim.current_event.action == "KEY PRESSED: J": 121

print(lemma, FREQ[lemma], sim.show_time()) 122

break 123

3.6. EXERCISES 77

ACT-R – subsymbolic parameters

Base-level learning

Switched on by subsymbolic=True.
The equation describing learning of base-level activation for a chunk i is:

Bi = ln(
n

∑
j=1

(t−d
j)) + η

• n: The number of presentations for chunk i

• tj : The time since the jth presentation

• d: The decay parameter (set by decay)

• η: the instantaneous noise

The (instantaneous) noise:
σ2 = s2 ∗ π2/3

• s: The noise parameter (set by instantaneous_noise)

Retrieval latency:
T = Fe−A

• A: Activation of the chunk retrieved

• F: The latency parameter (set by latency_parameter)

Retrieval latency when retrieval fails:

T = Fe−τ

• τ: The retrieval threshold (set by retrieval_threshold)

• F: The latency parameter (set by latency_parameter)

For an example see u4_paired in tutorials.

Source and activation

Switched on by subsymbolic=True and specifying buffer_spreading_activation (see below).

Ai = Bi + ∑
k

∑
j

Wkj ∗ Sji

• Ai: activation of the chunk i

• Bi: base-level activation, see above

78 CHAPTER 3. PERFORMANCE

• Wkj: the amount of activation from source j in buffer k

• Sji: the strength of association from source j to chunk i

Wkj is set by buffer_spreading_activation. The value of this parameter is a dictionary in
which keys specify what buffers should be used for spreading activations, values specify the
amount of activation in these buffers.

Sji = S− ln(f anj)

• S: the maximum associative strength (set by strength_of_association)

• f anj: the number of chunks in declarative memory in which j is the value of a slot plus
one for chunk j being associated with itself

For an example see u5_fan in tutorials.

Adding partial matching

Switched on by subsymbolic=True and partial_matching=True.

Ai = Bi + ∑
k

∑
j

Wkj ∗ Sji + ∑
l

Mli

• Mli: The similarity between the value l in the retrieval specification and the value in
the corresponding slot of chunk i

The similarity currently only uses default values - a maximum similarity (0) and a maximum
different (-1). To be added: let the modeler set these values. For an example see u5_grouped
in tutorials.

Utility in production rules

Switched on by partial_matching=True. The (utility) noise:

σ2 = s2 ∗ π2/3

• s: The noise parameter (set by utility_noise)

Each rule can specify its own utility (by having the parameter utility=n, where n is a num-
ber). Each rule can also specify reward it creates for utility learning (by having the parameter
reward=n, where n is a number). Utility learning is set by utility_learning=True. The learn-
ing rate for utility learning is set by utility_alpha. For an example see u6_simple in tutorials.

Bibliography

Anderson, John R. 1982. Acquisition of cognitive skill. Psychological review 89:369.

Anderson, John R. 1990. The adaptive character of thought. Hillsdale, NJ: Lawrence Erlbaum
Associates.

Anderson, John R. 2007. How can the human mind occur in the physical universe?. Oxford
University Press.

Anderson, John R., Daniel Bothell, and Michael D. Byrne. 2004. An integrated theory of the
mind. Psychological Review 111:1036–1060.

Anderson, John R, Jon M Fincham, and Scott Douglass. 1999. Practice and retention: a uni-
fying analysis. Journal of Experimental Psychology: Learning, Memory, and Cognition 25:1120–
1136.

Anderson, John R., and Christian Lebiere. 1998. The atomic components of thought. Hillsdale,
NJ: Lawrence Erlbaum Associates.

Anderson, John R., and Lael J. Schooler. 1991. Reflections of the environment in memory.
Psychological Science 2:396–408.

Davies, Martin. 2001. Knowledge (explicit and implicit): Philosophical aspects. In Interna-
tional encyclopedia of the social and behavioral sciences, ed. N. J. Smelser and B. Baltes, 8126–
8132. Elsevier.

Ebbinghaus, Hermann. 1913. Memory: A contribution to experimental psychology. New
York: Teachers College, Columbia University. URL http://psychclassics.yorku.ca/

Ebbinghaus/index.htm.

Forster, Kenneth. 1992. Memory-addressing mechanisms and lexical access. In Orthography,
phonology, morphology, and meaning, ed. R. Frost and L. Katz, volume 94, 413–434. Amster-
dam: North-Holland.

Forster, Kenneth I. 1976. Accessing the mental lexicon. In New approaches to language mecha-
nisms, ed. R. J. Wales and E. Walker, volume 30, 257–287. Amsterdam: North-Holland.

Forster, Kenneth I. 1990. Lexical processing. In Language: An invitation to cognitive science, ed.
Daniel Osherson and Howard Lasnik, 95–131. Cambridge, MA: MIT Press.

Fuchs, Albert. 1971. The saccadic system. The control of eye movements 343–362.

79

http://psychclassics.yorku.ca/Ebbinghaus/index.htm
http://psychclassics.yorku.ca/Ebbinghaus/index.htm

80 BIBLIOGRAPHY

Hale, John T. 2014. Automaton theories of human sentence comprehension. Stanford: CSLI Publi-
cations.

Hart, Betty, and Todd R Risley. 1995. Meaningful differences in the everyday experience of young
american children.. Baltimore: Paul H Brookes Publishing.

Howes, Davis H, and Richard L Solomon. 1951. Visual duration threshold as a function of
word-probability. Journal of experimental psychology 41:401.

Just, Marcel A., and Patricia A. Carpenter. 1980. A theory of reading: From eye fixations to
comprehension. Psychological Review 87:329–354.

Just, Marcel A., Patricia A. Carpenter, and Jacqueline D. Woolley. 1982. Paradigms and pro-
cesses in reading comprehension. Journal of Experimental Psychology: General 111:228–238.

Lewandowsky, S., and S. Farrell. 2010. Computational modeling in cognition: Principles and
practice. Thousand Oaks, CA, USA: SAGE Publications.

Lewis, Richard, and Shravan Vasishth. 2005. An activation-based model of sentence process-
ing as skilled memory retrieval. Cognitive Science 29:1–45.

Logan, Gordon D. 1990. Repetition priming and automaticity: Common underlying mecha-
nisms? Cognitive Psychology 22:1–35.

Meyer, David E, and David E Kieras. 1997. A computational theory of executive cognitive
processes and multiple-task performance: Part i. basic mechanisms. Psychological review
104:3.

Monsell, Stephen. 1991. The nature and locus of word frequency effects in reading. In Basic
processes in reading: Visual word recognition, ed. D. Besner and G. W. Humphreys, 148–197.
Hillsdale, NJ: Erlbaum.

Murray, Wayne S, and Kenneth I Forster. 2004. Serial mechanisms in lexical access: the rank
hypothesis. Psychological Review 111:721.

Newell, A. 1990. Unified theories of cognition. Cambridge, MA: Harvard University Press.

Newell, Alan. 1973. Production systems: Models of control structures. In Visual information
processing, ed. W.G. Chase et al., 463–526. New York: Academic Press.

Newell, Allen, and Paul S Rosenbloom. 1981. Mechanisms of skill acquisition and the law of
practice. In Cognitive skills and their acquisition, ed. John R. Anderson, 1–55. Hillsdale, NJ:
Erlbaum.

Polanyi, Michael. 1967. The tacit dimension. London: Routledge and Kegan Paul.

Poore, Geoffrey M. 2013. Reproducible documents with pythontex. In Proceedings of the 12th
Python in Science Conference, ed. Stéfan van der Walt, Jarrod Millman, and Katy Huff, 78–84.

Rayner, Keith. 1998. Eye movements in reading and information processing: 20 years of
research. Psychological Bulletin 124:372–422.

BIBLIOGRAPHY 81

Reichle, Erik D, Alexander Pollatsek, Donald L Fisher, and Keith Rayner. 1998. Toward a
model of eye movement control in reading. Psychological review 105:125.

Resnik, Philip. 1992. Left-corner parsing and psychological plausibility. In Proceedings of the
Fourteenth International Conference on Computational Linguistics. Nantes, France.

Ryle, Gilbert. 1949. The concept of mind. London: Hutchinson’s University Library.

Salvucci, Dario D. 2001. An integrated model of eye movements and visual encoding. Cog-
nitive Systems Research 1:201–220.

Schilling, Hildur EH, Keith Rayner, and James I Chumbley. 1998. Comparing naming, lex-
ical decision, and eye fixation times: Word frequency effects and individual differences.
Memory & Cognition 26:1270–1281.

Schooler, Lael J., and John R. Anderson. 1997. The role of process in the rational analysis of
memory. Cognitive Psychology 32:219–250.

Staub, Adrian. 2011. Word recognition and syntactic attachment in reading: Evidence for a
staged architecture. Journal of Experimental Psychology: General 140:407–433.

Vasishth, Shravan, Sven Bruüssow, Richar L. Lewis, and Heiner Drenhaus. 2008. Processing
polarity: How the ungrammatical intrudes on the grammatical. Cognitive Science 32:685–
712.

Whaley, Charles P. 1978. Word£nonword classification time. Journal of Verbal Learning and
Verbal Behavior 17:143–154.

Wickelgren, Wayne A. 1972. Trace resistance and the decay of long-term memory. Journal of
Mathematical Psychology 9:418–455.

	Introduction
	Using pyactr – people familiar with Python
	Using pyactr – beginners

	Basics of ACT-R
	Introduction
	Why do we care about ACT-R, and cognitive architectures and modeling in general
	Knowledge in ACT-R
	Representing declarative knowledge: chunks
	Representing procedural knowledge: productions

	Using pyactr
	Writing chunks in pyactr
	Modules and buffers
	Writing productions in pyactr
	More examples on queries
	Running a model
	Example 2 – a top-down parser
	First steps in the model
	Production rules
	Running the model
	Stepping through a model
	Exercises

	The environment in ACT-R
	Introduction
	A simple lexical decision task
	Motor module
	Vision in ACT-R
	Manual processes in ACT-R
	Exercises

	Performance
	Introduction
	Understanding the (basic) activation equation
	The base-level learning equation
	The attentional weighting equation
	The associative strength equation

	Activation, probability of retrieval, and latency of retrieval
	Probability of retrieval
	Latency of retrieval

	Modelling performance
	Modelling lexical decision tasks

	pyactr model of lexical decision
	Exercises
	Exercise 1

