
Probabilistic semantic automata in the verification of quantified statements
Jakub Dotlačil (j.dotlacil@gmail.com)

Center for Language and Cognition, University of Groningen

Jakub Szymanik (jakub.szymanik@gmail.com)
Institute for Logic, Language and Computation, University of Amsterdam

Marcin Zajenkowski (zajenkowski@psych.uw.edu.pl)
Faculty of Psychology, University of Warsaw

Abstract

Strategies used by people to verify quantified sentences, like
‘Most cars are white’, have been a popular research topic on
the intersection of linguistics, computer science, philosophy,
and psychology. A prominent computational model of the task,
semantic automata, has been introduced by van Benthem in
1983. In this paper we present a probabilistic extension of
the model. We show that the model explains counting errors
in the verification process. Furthermore, we observe that the
variation in quantifier verification data cannot be explained by
Approximate Number Sense, a prominent approach to proba-
bilistic number estimation.
Keywords: quantifier verification; natural language seman-
tics; automata theory; probabilistic computational modeling,
Approximate Number Sense

Introduction.
Subjects’ verification strategies used in rejecting/accepting
sentences have been a popular research topic in psycholin-
guistics (see, e.g. Clark and Chase, 1972). Together with the
turn to more linguistically-complex phenomena the topic has
also received an increased interest in linguistics, semantics,
logic, and computer science. Especially the computational
and cognitive capacities of recognizing the truth-value of sen-
tences with so-called generalized quantifiers (like ‘some’, ‘an
even number of’, ‘more than 7’, ‘less than half’ (Peters and
Westerståhl, 2006)) has been intensively studied (see, e.g.
Szymanik, 2009; Lidz et al., 2011)

A prominent computational model for verification of quan-
tifiers employs semantic automata (van Benthem, 1986). In-
tuitively, to check whether sentence (1) is true:

1. Every sentence in this paper is grammatically correct.

it suffices to read the sentences from this article one by one.
If we find an incorrect one, then we know that the statement is
false. Otherwise, if we read the entire paper without finding
any incorrect sentence, then statement (1) is true (see Fig. 1
for a graphical representation). Analogous strategies exist for
all other natural language quantifiers.

However, for recognizing some higher-order quantifiers,
like “less than half” or “most”, we need computational mod-
els making use of internal memory. Intuitively, to check
whether sentence (2) is true we must identify the number of
correct sentences and store it in working memory to compare
with the number of incorrect sentences.

2. Most of the sentences are grammatically correct.

q0 q1

correct

incorrect

correct, incorrect

Figure 1: This finite automaton checks whether every sen-
tence in the text is grammatically correct. It inspects the text
sentence by sentence starting in the accepting state (double
circled), qo. As long as it does not find an incorrect sentence
it stays in the accepting state. If it finds an incorrect sentence,
then it already “knows” that the sentence is false and move to
the rejecting state, q1, where it stays no matter what sentence
is next.

Mathematically speaking, such an algorithm can be realized
by a push-down automaton, PDA, see Fig. 2. PDAs can not
only read the input and move to the next state, they also have
access to the stack memory and depending on the top ele-
ment of the stack they decide what to do next. Graphically,
we represent it by the following labeling of each transition:
s1,x,y→ s2,w, where s1 is the current state, x is the current
input the machine reads (i.e. the element under considera-
tion), y is the top element of the stack, and s2 is the final state
and w shows what element is put on the top of the stack next
(when the element is added to the previous top element, w is
of length 2 and shows both the previous element and the new
element) (Hopcroft et al., 2000).

It has been shown that the computational distinction be-
tween quantifiers recognized by finite-automata and push-
down automata is psychologically relevant, i.e., the more
complex the automaton, the longer the reaction time
and working memory involvement of subjects asked to
solve the verification task (see Szymanik and Zajenkowski,
2010a,b).McMillan et al. (2005), in an fMRI study, have
shown that during verification, all sentences recruit the right
inferior parietal cortex associated with numerosity, but only
proportional quantifiers recruit the prefrontal cortex, which is
associated with executive resources, such as working mem-
ory. Zajenkowski et al. (2011) have compared the process-
ing of natural language quantifiers in a group of patients with
schizophrenia and a healthy control group. In both groups,
the difficulty of the quantifiers was consistent with the com-
putational predictions, and patients with schizophrenia took



s0 s1

s0, correct, #→ s0, Y
s0, incorrect, #→ s0, N

s0, correct, N→ s0, ε

s0, incorrect, Y→ s0, ε

s0, correct, Y→ s0, YY
s0, incorrect, N→ s0, NN

s0, ε, Y→ s1,ε

Figure 2: This push-down automaton for statement (2) reads
the text sentence by sentence. The automaton needs two
states and the stack. It starts in the rejecting state, s0 with
an empty stack marked by #. If it finds a correct sentence
it pushes Y on top of the stack and stays in s0, if it finds an
incorrect sentence it pushes N on top of the stack. If it finds
a correct (incorrect) sentence and there is already N (Y ) on
the top of the stack, the automaton pops out the top of the
stack (by turning it into the empty string ε). If it ‘sees’ a cor-
rect (incorrect) sentence and there is Y (N) on the top of the
stack, then the automaton pushes another Y (N) on the top of
the stack. Eventually, when the automaton has analyzed the
whole paper (input = ε) then it looks on the top of the stack.
If there is a Y it moves to the accepting state, otherwise it
stays in the rejecting state without modifying the stack. For
simplification, we omit the situations: s0, ε, N→ s0, N , s0,ε,
#→ s0, #.

more time to solve the problems. However, they were signif-
icantly less accurate only with proportional quantifiers, such
as ‘more than half’.

All this evidence speaks in favor of the thesis that the
model employing two types of automata can capture some
cognitive aspect of the semantics for generalized quantifiers.
However, the model, while important, is crude and only qual-
itative. It distinguishes between quantifier types but it does
not offer a cognitive computational story of quantifier pro-
cessing. For instance, the semantic automata cannot tell us
why the verification of the sentence More than half of the
cars are blue leads to more problems when there are 8 blue
cars and 7 cars of other colors than when there are 9 blue
cars and 6 other cars, as we will show below. The model
also leaves the relation between semantics of quantifiers and
number sense (Dehaene, 1999) completely unspecified. We
show that such problems can be alleviated if one considers
probabilistic, rather than deterministic automata as a model
of verification strategies. As a result we can directly com-
pare semantic automata model with the quantifier verification
model relying on Approximate Number System (ANS, Piet-
roski et al., 2009). We believe that introducing the probabilis-
tic version of the model is a first step towards a computational
cognitive model of quantifier processing.

Probabilistic semantic automata.
Probabilistic finite-state automata (PFSA) can be used to
model the verification of counting quantifiers (like, ‘more
than k’, ‘less than k’). PFSAs are tuples 〈S,Σ,s0,F,M,Prob〉,
where S = {s0, . . . ,sn} is the finite set of states, Σ the input
alphabet, s0 is the starting state, F is the set of final states, M
is a transition relation (S×Σ)× S and Prob assigns a proba-
bility to each element of M, such that for every (s j,a)∈ S×Σ,
∑si∈M(s j ,a) Prob(s j,a,si) = 1 (cf. Rabin, 1963).

As an input PFSAs take a string encoding the finite situa-
tion (model). They are to decide whether a given quantifier
sentence, Q(A, B), is true in the model.

An example of a PFSA used for the verification of more
than one car is blue is shown in Figure 3, where s0 is the
initial state and s2 is the final accepting state, each transi-
tion indicates what happens when a blue car is encountered,
and the superscript on a transition indicates where the tran-
sition originated. Thus, for instance, p0

0–p0
2 all start at s0

and, given the conditions on probabilities discussed above,
exhaust the events in one probability space (probabilities as-
signed to them sum up to 1). They are abbreviations. p0

2, for
example, is an abbreviation of (s0,BLUE CAR,s2). The deter-
ministic version discussed by van Benthem (1986) could be
expressed by assuming Prob(p0

1) = Prob(p1
1) = 1.

s0 s1 s2
p0

1

p0
0

p0
2

p1
1

p1
0

Figure 3: Probabilistic finite state automaton for more than
one car is blue.

Probabilistic push-down automata (PPDAs) are tuples
〈S,Σ,Γ,M,s0,F,Prob〉, where S and Σ as previously stand
for the set of states and the input alphabet, Γ is the stack al-
phabet (# ∈ Γ marks the bottom of the stack) and the tran-
sition relation is M ⊆ (S × Σ× Γ)× (S × Γ∗), where the
length of Γ∗ is at most 2 elements. Similarly as with PF-
SAs, ∑(si,A∗i)∈M(s j ,a,A j) Prob(s j,a,A j,si,A∗i) = 1 for every
(s j,a,A j) ∈ S×Σ×Γ. An example of a PPDA modeling the
verification of more than half of the cars are blue is given
in Table 1, where s1 is the final accepting state. Each non-
empty box shows all the transitions in one probability space
and each row represents rules with identical effects, so the
rules in the same row are expected to have the same probabil-
ity (for example, in Row 2, reading BLUE CAR leads to either
adding one Y to the stack or removing N from the top of the
stack; since N keeps track of non-blue cars and Y keeps track
of blue cars, the rules in Row 2 lead to the same effect; simi-
larly for the other rows). The non-probabilistic variant could
be expressed by stating that the second row in each block has



probability 1, see also Fig. 2 for such a deterministic push-
down automaton.

Testing probabilistic automata.
We tested whether PFSAs and PPDAs could model accuracy
in verification of counting and proportional quantifiers. We
applied PFSAs and PPDAs to the data collected in two exper-
iments discussed by Szymanik and Zajenkowski (2010b) and
Zajenkowski and Szymanik (2013).

In the experiments participants were asked to verify Polish
sentences with counting and proportional quantifiers against
pictures showing cars in a car park. There was an added dif-
ficulty of a working memory task in Exp. 1 (which we will
ignore in our models, to keep our study manageable at this
point).

The verification tasks consisted of simple propositions in
Polish containing a quantifier that probed a color feature of
cars on display, e.g., ‘Więcej niż połowa samochodów jest
niebieska’ (More than half of the cars are blue). The par-
ticipants were asked to decide if the proposition accurately
described the presented picture. They responded by pressing
the button with the letters ‘p’ or ‘f’ if true or false, respec-
tively. (The letters refer to the first letters of Polish words for
‘true’ and ‘false’.) In the first experiment the displayed car
park always contained 15 cars, while in the second experi-
ment the accompanying picture had either 15 elements or 17
elements. Each picture contained objects in two colors.

Four different quantifier types were used in the studies.
Here, we only consider data from three groups:

1. PQ: proportional quantifiers (less than half, more than
half); PQs were studied in four different scenarios, which
varied according to the number of elements of the probed
color vs. another color (9 vs. 6; 8 vs. 7; 10 vs. 7; or 9 vs.
8);

2. CQ4/5: counting quantifiers of relatively low rank (less
than 5, more than 4); the number of the cars in the probed
color was maximally close to the criterion for validating or
falsifying the proposition;

3. CQ7/8: counting quantifiers of relatively high rank (less
than 8, more than 7); the number of the cars in the probed
color was maximally close to the criterion for validating or
falsifying the proposition.

PQs were tested in 8 trials for each scenario type. Each CQ
type also appeared in 8 trials. 50% of the items were designed
to be judged as true, the rest was false.

63 participants took part in Experiment 1, 99 participants
took part in Experiment 2.1

The descriptive summary of the data is presented in Figure
4. It shows that the accuracy in responses to CQs decreased
with the increase of the number of elements that had to be

1The number of participants differed slightly from the original
reports as some subjects were excluded from the analysis due to
missing values on other cognitive tasks studied therein.

counted. It also shows that the participants judging PQs be-
came less accurate as the ratio of the elements of the probed
color and of another color got closer to 1 (e.g., the scenarios
8 vs. 7 and 9 vs. 8 were more difficult than the scenarios 9
vs. 6 and 10 vs. 7).

We now turn to the modeling of the verification of CQs
(CQ4/5, CQ7/8) and PQs. The models implemented PFSAs
and PPDAs and captured, among other things, the descrip-
tive observations just mentioned. The PFSAs and PPDAs
themselves were embedded in Bayesian hierarchical models,
which allowed us to include differences in individual partic-
ipants’ responses in our analysis. All models were imple-
mented in JAGS (Plummer, 2003).

The model for the verification of CQs is summarized
graphically in Figure 5 (see Lee and Wagenmakers 2014 for
an introduction into graphical summaries of Bayesian mod-
els). The data to be estimated, kN,i (the number of correct
responses given by a subject in each condition) were taken to
come from the binomial distribution with n = 8 (the number
of items seen by each subject in each condition). The param-
eter θN, j is modeled as the addition of the fixed effect SUMN
and the subject random effect coming from the normal distri-
bution with deviation σ. SUMN is the probability calculated
using PFSA.

The PFSA we consider has three possibilities at each state
when encountering the car of the probed color (BLUE CAR
from now on): either it advances to the next state (the ‘cor-
rect’ behavior), p0

1 and p1
1 in Figure 3, or it loops, p0

0, p1
0, or

it moves by two states, p0
2 in Figure 3. When the final state

is sn+1, or any higher state, the sentence more than n cars
are blue is accepted and fewer than n+1 cars are blue is re-
jected, when the final state is lower than sn+1, the situation is
reversed. We assumed that the probability of pi

1 is the same
in every probability space, and that the same is true for pi

0 and
for pi

2. In other words, the PFSA has only three free parame-
ters, pi

1–pi
3, irrespective of the value of i.

The prior distribution of the parameters is the Dirichlet dis-
tribution, in which all the three parameters are equal. This
represents the fact we have no previous information that one
transition is more likely than the other ones.

SUMN is the sum of all walks through our probability
spaces that lead to the correct response given the number of
blue cars and the CQ used. Different SUMs, SUM4/5 and
SUM7/8, were computed since the number of walks differ in
case of CQ4/5 and CQ7/8.

The model simulating the verification of PQs was similar,
the only important difference being that SUMN came from
the PPDA discussed above (see Table 1). Unlike in case of
PFSAs, two types of transitions are estimated here: either
p0–p2, covering the probability space of transitions when en-
countering a blue car, or q0–q2, covering the probability space
of transitions when encountering a non-blue car.2 SUMN dif-

2The model discussed here ignores p3 and q3, so the comparison
between PFSAs and PPDAs is more straightforward (i.e., the same
number of transitions is assumed for each probability space). We
also ran the full model, which included p3 and q3. The full model



p0 s0,BLUE CAR,#→ s0,# s0,BLUE CAR,Y → s0,Y s0,BLUE CAR,N→ s0,N
p1 s0,BLUE CAR,#→ s0,Y s0,BLUE CAR,Y → s0,YY s0,BLUE CAR,N→ s0,ε
p2 s0,BLUE CAR,#→ s0,N s0,BLUE CAR,Y → s0,ε s0,BLUE CAR,N→ s0,NN
p3 s0,BLUE CAR,#→ s0,YY s0,BLUE CAR,N→ s0,Y
q0 s0,NON-BLUE CAR,#→ s0,# s0,NON-BLUE CAR,N→ s0,N s0,NON-BLUE CAR,Y → s0,Y
q1 s0,NON-BLUE CAR,#→ s0,N s0,NON-BLUE CAR,N→ s0,NN s0,NON-BLUE CAR,Y → s0,ε
q2 s0,NON-BLUE CAR,#→ s0,Y s0,NON-BLUE CAR,N→ s0,ε s0,NON-BLUE CAR,Y → s0,YY
q3 s0,NON-BLUE CAR,#→ s0,NN s0,NON-BLUE CAR,Y → s0,N

s0,ε,Y → s1,Y

Table 1: Probabilistic push-down automaton for more than half of the cars are blue

Counting quantifiers

0

20

40

60

2 4 6 8
No_correct_answers

co
un

t CQ_type
CQ4/5
CQ7/8

Proportional quantifiers

0

20

40

60

2 4 6 8
No_correct_answers

co
un

t

PQ_type
PQ6:9
PQ7:10
PQ7:8
PQ8:9

Means and SEs of CQs and PQs

●

●

●
●

●

●

6.4

6.8

7.2

CQ4/5 CQ7/8 PQ6:9 PQ7:10 PQ7:8 PQ8:9
Quantifier_type

M
ea

ns
 a

nd
 S

E
s

Figure 4: Number of correct responses per subject and quantifier type, means and standard errors

σ

φj

p0−2

SUMN

θN,j

kN,i

i = 1 . . . 252

j = 1 . . . 63

kN,i ∼ Binomial
(

θN,j, 8
)

θN,j = φj + SUMN

φj ∼ Normal
(

0, σ
)

σ =
1

√

λ

λ ∼ Uniform
(

10, 10000
)

p0−2 ∼ Dirichlet
(

1

3
, 1

3
, 1

3

)

Figure 5: Bayesian model for verification of CQs

fers depending on the number of blue and non-blue cars.
The posterior distributions of the most relevant parameters

are summarized in box-plots of Figure 6. The ‘correct’ tran-
sition (p1, q1) is narrower in case of PFSA than in PPDA but
the 95% confidence interval of the PPDA posteriors included
the mean of p1 of the PFSA and thus, we cannot conclude that
the correct transition significantly differs between automaton
types. The box-plot of θ (probability of success) shows that
we correctly model that the success probability of binomial
distribution is lower with CQs of higher ranks, and also de-

did not show any significant divergences from the results discussed
here.

creases in case of smaller differences between the number of
elements compared in PQs.

To validate the models further, we sampled the posterior
predictive distribution using the simulations from the poste-
rior density of σ and p1–p3 (plus q1–q3 in PPDAs). Table 2
compares the means and 95% intervals of the actual responses
(Row 1) and of the predictive distribution (Row 2). The 95%
intervals of the posterior predictive always included the ob-
served mean and did not underestimate or overestimate. This
is also apparent from the p-values (Row 3), which show that
the simulations are not significantly different from the ob-
served means. (As is common, the p-values were calculated
as proportions of simulations which are at least as extreme as
the observed mean.)

We conclude that our hierarchical Bayesian models can
successfully model the data of two experiments. In partic-
ular, the models correctly capture the fact that higher rank
CQs decrease accuracy, and the accuracy in verification also
decreases when the ratio of sets compared by PQs is smaller.
Since the information about number of elements and size of
sets enter only in PFSAs and PPDAs in our models, we con-
clude that PFSAs and PPDAs constitute valid approaches to
modeling the verification of CQs and PQs.

Comparing semantic automata with ANS.
It is a plausible hypothesis that the observed variation in the
data should not be modeled by probabilistic automata but by
probabilistic number estimations. One influential model in
psychophysics is Approximate Number Sense, used to repre-



CQ4/5 CQ7/8 PQ6:9 PQ7:10 PQ7:8 PQ8:9
Observed 6.79 [6.61 - 6.96] 6.36 [6.15 - 6.55] 7.46 [7.31 - 7.59] 7.40 [7.24 - 7.54] 6.58 [6.35 - 6.78] 6.77 [6.56 - 6.97]
PFSA/PPDA 7.01 [6.75 - 7.28] 6.41 [6.03 - 6.76] 7.43 [7.22 - 7.61] 7.41 [7.19 - 7.59] 6.57 [6.25 - 6.87] 6.74 [6.42 - 7.02]
p-values p = 0.10 p = 0.81 p = 0.76 p = 0.91 p = 0.95 p = 0.83
ANS - - 7.38 [7.16 - 7.59] 7.36 [7.13 - 7.56] 6.61 [6.29 - 6.92] 6.81 [6.51 - 7.09]
p-values - - p = 0.49 p = 0.76 p = 0.83 p = 0.78

Mean 95% interval
w 0.06 [0.02 - 0.15]

Table 2: Summaries of the posterior predictive and the actual data and the Weber fraction of the ANS model; means (boldfaced),
95% intervals (in square brackets), and p-values

p1,q1

●
●
●

●

●●●●

●

●●●●●
●●●

●

●●

●

●●●●●●
●

●

●●

●

●
●●
●
●

●

●

●

●

●

●
●
●
●●

●

●
●

●

●
●

●●

●●●

●

●●

●●●●●●
●

●
●●●●

●●●
●

●

●
●
●

●

●

●

●

●

●

●
●
●●

●●●

●

●●●●

●

●

●

●●●●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●
●●
●●

●

●

●

●
●
●
●●
●
●●

●

●

●
●

●●●
●
●
●●

●

●
●●
●●●●●●
●●●●●
●
●●

●

●

●

●
●

●

●●●

●

●●●

●

●
●●
●●

●

●

●

●
●●●
●

●
●

●
●

●

●●●

●

●

●

●

●●

●●

●

●

●

●●
●
●
●●●

●

●

●

●

●

●●

●

●●

●
●

●●

●

●
●
●●
●●
●●●●

●

●●

●●●

●

●

●
●●●

●

●

●

●
●●●
●

●
●

●●●
●●

●

●

●

●●

●
●

●

●

●●●●●●
●●

●
●

●

●●

●
●

●●
●

●

●●●●●●

●

●●●

●

●
●
●●
●
●●
●
●
●

●

●

●●●

●

●
●

●●

●●

●

●

●
●

●
●●

●

●●●●

●●

●

●●●

●

●

●●

●●
●●●●●●●●●●●●
●
●●

●

●

●

●
●●
●●●

●●●

●

●

●●
●

●

●
●
●●●●

●

●

●

●

●●

●

●

●●
●
●
●

●
●
●

●
●●●

●

●

●

●
●

●

●
●

●
●●

●

●
●

●

●●
●●
●

●

●
●●●
●

●
●

●
●●
●

●

●

●●

●●
●●
●

●●●

●●

●●●●
●●●●

●

●

●●

●
●●

●

●

●

●●●●●
●

0.925

0.950

0.975

1.000

p1−PFSA p1−PPDA q1−PPDA
Type

P
ro

ba
bi

lit
y

σ

●

●
●

●●

●

●●●

●
●

●

●
●●

●

●

●

●

●
●
●
●
●
●

●

●

●

●
●

●

●

●
●

●

●
●●

●

●

●

●

●●●

●

●
●

●

●●
●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●●

●

●

●●

●

●●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●

●

●
●●
●
●
●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●
●

●
●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●●

●

●

●
●
●

●

●
●

●

●
●
●

●

●
●

●●

●
●●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●●

●
●

●●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●●
●

●

●

●

●●

●

●

●●

●

●●

●
●

●

●

●

●
●

●

●

●●

●●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●●

●

●●
●
●

●

●

●
●
●
●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●

●

●

●●●

●●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●●

●●

●
●

●

●●●

●

●●
●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●
●
●

●

●

●

●

●
●●

●

●
●●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●
●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●●
●
●●
●

●

●●

●

●
●

●

●

●

●

●●

●
●●

●

●

●

●

●
●

●

●

●

●

●●●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●
●

●
●

●●

●

●●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●
●

●

●

●
●

●

●

●●●

●

●

●

●

●

●
●
●●

●●
●
●

●

●
●
●

●

●

●●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●
●

●

●

●
●●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●●
●

●
●

●

●
●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●●

●●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●●

●●●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●

●

●
●

●
●
●

●
●

●

●

●

●●●

●

●
●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●
●●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●●

●
●
●
●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●
●

●●

●
●●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●
●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●

●

●
●●●

●

●
●

●
●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●●
●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●
●
●
●
●

●

●

●●

●

●

●

●

●

●

●
●●●

●

●

●

●

●●

●

●●
●
●●●

●

●
●

●●●
●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●
●

●
●
●●
●

●
●

●●

●

●

●

●

●
●

●●

●●

●

●
●
●●●
●

●
●

●

●

●

●

●

●
●
●

●
●

●

●

●●
●

●

●

●

●

●●●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●●

●

●●●●
●

●●
●

●

●
●

●

●

●

●
●
●

●
●

●

●

●
●

0.025

0.050

0.075

0.100

Sigma−PFSA Sigma−PPDA
Type

P
ro

ba
bi

lit
y

θ

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●
●
●
●●

●

●

●

●●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●
●

●●●

●●

●

●●

●●

●●

●●●●●●●●

●

●●●●●●●●●●●

●●

●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●

●

●

●●●●

●

●●●●

●

●●

●●

●

●

●●●

●●●

●●●

●

●

●

●

●●

●●●●

●

●●●●●●●

●

●●

●●

●

●●●●

●●●●●●●●

●

●

●●●●●

●

●●

●●

●

●●

●●

●

●

●

●

●

●●

●●●

●

●●

●●●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

0.8

0.9

CQ4/5 CQ7/8 PQ6/9 PQ7/10 PQ7/8 PQ8/9
Type

P
ro

ba
bi

lit
y

Figure 6: Box-plots of posterior of the “correct” transition, σ

and θ

sent imprecise cardinalities and the comparison of quantities
without counting (see Dehaene, 1999). Recently, ANS has
been used to model the verification of the quantifier ‘most’
(Lidz et al., 2011; Pietroski et al., 2009) under 200 and 150 ms
time pressure.We used the ANS model of Lidz et al. (2011)
for the quantifiers more than half and fewer than half to learn
whether our findings could be captured by this model. If this
was the case, the strength of our findings would be weakened
as one could argue that there is no need for a specific semantic
model of verification.

The posterior predictive of the ANS model is summarized
in the fourth and fifth rows of Table 2. The predictions do
not diverge significantly from the observed values or the val-
ues of our PPDA. However, these good predictions come at a
cost: one free parameter of the model, the Weber fraction w,

is underestimated.3 Its posterior distribution, shown in Table
2, is at odds with previous findings that French adults’s We-
ber fraction is .12 (Pica et al., 2004), i.e., on average French
adults can discriminate the ratio 9:8 but not finer ratios. In
contrast to that, our model would predict that on average par-
ticipants can discriminate the ratio 15:14.

Unless Polish and French adults differ in their represen-
tation of imprecise quantities (which we find extremely un-
likely as ANS is know to be language-independent (see De-
haene, 1999)), the estimation of w argues against ANS as a
suitable model for quantifier verification. Therefore, even
though ANS explains accuracy data for the verification of
‘most’ under time pressure, it is unlikely that ANS is em-
ployed in a similar way in the verification process for related
quantifiers without time pressure.

Discussion and Outlook
We have introduced the probabilistic semantic automata
model. It extends a prominent computational approach from
logic and linguistics. In the paper, we have modeled two
main natural language quantifier classes: counting and pro-
portional quantifiers. Our method of turning semantic au-
tomata into probabilistic semantic automata can be straight-
forwardly applied to obtain a probabilistic verification model
for any natural language quantifier. Therefore, the paper pro-
vides a new tool for the semantics of natural language.

Our experiments have shown that probabilistic semantic
automata can explain judgment accuracy in sentence-picture
verification experiments. Moreover, the probabilistic seman-
tic automata explain the distance effect in proportional quan-
tifier verification: a decrease in verification accuracy as the
numerical distance between the two sets to be compared de-
creases. Furthermore, we have critically compared proba-
bilistic semantic automata model with the verification model
based on number estimations and we have argued that ANS
cannot consistently explain the verification process under-
lying the semantics of proportional quantifiers. Hence, the
probabilistic semantic automata model seems to be a neces-
sary innovation in cognitive science. Additionally, the pre-
sented approach illustrates fruitful interaction between com-
putational cognitive modeling and more traditional disci-

3The Weber fraction expresses the smallest numerical difference
between two quantities that participants can distinguish. The Weber
fraction of n1 vs n2 is calculated as (n1−n2)/n2.



plines: linguistics, logic, and formal semantics.
As it always happens introducing a new perspective creates

many further questions and research opportunities. In con-
clusion let us briefly mention a few such themes that we find
particularly exciting. The main goal of our modeling is to bet-
ter understand cognitive resources underlying quantifier pro-
cessing. As we recalled in the introduction there is an ample
psychological evidence in favor of semantic automata. For
instance, Zajenkowski and Szymanik (2013) have recently
argued that the cognitive mechanism of comparing in mem-
ory the cardinalities of two sets is crucial when it comes to
the cognitive difficulty of the proportional judgements. How-
ever, PPDAs seem to suggest that counting and not compar-
ison is the most important process explaining the accuracy
of verification. In fact, in our model it is even hard to dis-
tinguish counting errors from memory slips. Therefore, to
further explain the role of cognitive resources in quantifier
processing we plan to bring probabilistic semantic automata
model more extensively to the lab by confronting its predic-
tions with more complex behavioral data, like reaction times.
On the other hand, probabilistic semantic automata model
poses also many new theoretical challenges: Do probabilis-
tic semantic automata give rise to a new classification of nat-
ural language quantifiers (cf. van Benthem, 1986)? Can the
model be naturally combined with the modeling of the acqui-
sition of quantifier meanings (see Gierasimczuk, 2007; Clark,
2010; Piantadosi, 2011)? Clearly, such questions are beyond
the topic of this paper but offer interesting venues to explore
in future applications of probabilistic semantic automata to
cognition.

Acknowledgments
JD acknowledges NWO Veni Grant 275.80.005. JS acknowl-
edges NWO Veni Grant 639.021.232. The work of MZ was
supported by a grant no. 2011/01/D/HS6/01920 funded by
the National Science Centre in Poland.

References
van Benthem, J. (1986). Essays in Logical Semantics. D.

Reidel, Dordrecht.

Clark, H. and Chase, W. (1972). On the process of com-
paring sentences against pictures. Cognitive Psychology,
3(3):472–517.

Clark, R. (2010). On the learnability of quantifiers. In van
Benthem, J. and ter Meulen, A., editors, Handbook of
Logic and Language, pages 909–922. Elsevier.

Dehaene, S. (1999). The Number Sense: How the Mind Cre-
ates Mathematics. Oxford University Press, USA.

Gierasimczuk, N. (2007). The problem of learning the se-
mantics of quantifiers. In Ten Cate, B. and Zeevat, H., edi-
tors, Logic, Language, and Computation, 6th International
Tbilisi Symposium on Logic, Language, and Computation,
TbiLLC 2005, volume 4363 of Lecture Notes in Computer
Science, pages 117–126, Batumi, Georgia. Springer.

Hopcroft, J. E., Motwani, R., and Ullman, J. D. (2000). In-
troduction to Automata Theory, Languages, and Computa-
tion. Addison Wesley, 2nd edition.

Lee, M. D. and Wagenmakers, E.-J. (2014). Bayesian Cogni-
tive Modeling: A Practical Course. Cambridge University
Press, Camgridge.

Lidz, J., Pietroski, P., Halberda, J., and Hunter, T. (2011).
Interface transparency and the psychosemantics of most.
Natural Language Semantics, 19(3):227–256.

McMillan, C. T., Clark, R., Moore, P., Devita, C., and Gross-
man, M. (2005). Neural basis for generalized quantifier
comprehension. Neuropsychologia, 43:1729–1737.

Peters, S. and Westerståhl, D. (2006). Quantifiers in Lan-
guage and Logic. Clarendon Press, Oxford.

Piantadosi, S. T. (2011). Learning and the language of
thought. PhD thesis, Massachusetts Institute of Technol-
ogy, Cambridge, Massachusetts.

Pica, P., Lemer, C., Izard, V., and Dehaene, S. (2004). Ex-
act and approximate arithmetic in an amazonian indigene
group. Science, 306:499–503.

Pietroski, P., Lidz, J., Hunter, T., and Halberda, J. (2009).
The meaning of ’most’: semantics, numerosity, and psy-
chology. Mind and Language, 24:54–85.

Plummer, M. (2003). Jags: A program for analysis of
bayesian graphical models using gibbs sampling. In Pro-
ceedings of the 3rd International Workshop on Distributed
Statistical Computing (DSC 2003). March, pages 20–22.

Rabin, M. O. (1963). Probabilistic automata. Information
and control, 6(3):230–245.

Szymanik, J. (2009). Quantifiers in TIME and SPACE. Com-
putational Complexity of Generalized Quantifiers in Natu-
ral Language. PhD thesis, University of Amsterdam, Am-
sterdam.

Szymanik, J. and Zajenkowski, M. (2010a). Comprehension
of simple quantifiers. Empirical evaluation of a computa-
tional model. Cognitive Science: A Multidisciplinary Jour-
nal, 34(3):521–532.

Szymanik, J. and Zajenkowski, M. (2010b). Quantifiers and
working memory. In Aloni, M. and Schulz, K., editors,
Amsterdam Colloquium 2009, Lecture Notes In Artificial
Intelligence 6042, pages 456–464. Springer.

Zajenkowski, M., Styła, R., and Szymanik, J. (2011). A
computational approach to quantifiers as an explanation for
some language impairments in schizophrenia. Journal of
Communication Disorders, 44(6):595 – 600.

Zajenkowski, M. and Szymanik, J. (2013). Most intelligent
people are accurate and some fast people are intelligent:
Intelligence, working memory, and semantic processing of
quantifiers from a computational perspective. Intelligence,
41(5):456 – 466.


	Introduction.
	Probabilistic semantic automata.
	Testing probabilistic automata.
	Comparing semantic automata with ANS.
	Discussion and Outlook
	Acknowledgments

